
Introduction to scientific computing (GBS 746): Introduction to
Linux (V1.2)

Malay K Basu (malay@uab.edu)

Feb 17-18, 2014

Contents

1 Why Linux? 3

2 Linux is not Unix 3

3 GNU software stack 3

4 GPL: GNU general public license 3

5 Linux-Unix-GNU philosophy 4

6 Some basic features of GNU/Linux 4

7 Some basic commands 4

7.1 Exercise . 4

8 File globbing and wildcard 4

9 Redirection and piping 4

10 cat 5

11 more 5

12 wc 5

13 head 5

14 tail 5

15 Directory structure 6

15.1 Exercise: . 6

1

16 Where I lay my head is home 6

16.1 Exercise . 6

17 Login scripts 6

18 alias 6

18.1 Exercise . 6

19 Path 6

19.1 Exercise . 7

20 Environment variables 7

21 PATH env variable 7

21.1 Exercise . 7

22 File permission 7

22.1 Exercise . 8

23 Compression and archiving 8

24 Program compilation 8

24.1 Exercise . 8

25 Working with structured text file 9

25.1 cut . 9

25.2 sort . 9

25.3 uniq . 9

26 wget 9

26.1 Exercise . 9

27 grep 10

27.1 Exercise . 10

28 find 10

28.1 Exercise . 11

29 Looping in bash shell 11

30 rsync 11

31 unison 12

2

32 Perl 12

32.1 Exercise . 12

33 Final problem set 13

33.1 Problem 1 . 13

33.2 Problem 2 . 13

33.3 Problem 3 . 13

1 Why Linux?

For a complete history of Linux look at the WikiPedia article.

1. It’s open-source, free as in beer.
2. Almost all large-scale computing systems use Linux.
3. Powerful shell, as you’ll see.

2 Linux is not Unix

All unix like operating systems have one thing in common, they are POSIX compatible. POSIX stands for
Portable Operating System Inerface, a set of C libraries. Another freely (as in beer) available unix like
operating system is BSD. Mac OSX is a BSD variant with open-source kernel called, Darwin.

Although very similar (all of them are POSIX compatible), Linux and Unix are not the same. Look at
SCO-Linux controversy, if you’re interested in the gory details. By all means and purposes, Linux has largely
replaced all types of unices.

Linux kernel was first created by Linus Torvalds. Together with GNU1 tools, we now have GNU/Linux
operating system.

3 GNU software stack

In 1983, Richard Stallman at MIT created Free Software Foundation (FSF). The dream was to create a “free”
(as in freedom) operating system. By 1990, he had almost everything except the kernel. This software stack
is called GNU. Linux provided that.

In a sense, what is more important for us is the GNU software stack. You can get it on BSD (another Unix
like operating system) variants, such as OSX or even on Windows through CygWin project.

4 GPL: GNU general public license

Almost all software on GNU/Linux are licensed under this licensing system, including the Linux kernel. The
full text of the license can be found at https://www.gnu.org/copyleft/gpl.html. The license allows you modify
and redistribute the software as you please (free as in freedom). But, if you have modified the software, the
modified version has to be redistributed under the original license. That means the freedom that the license
gave you, you should pass the same freedom to others. “Treat others the way you would like to be treated” –
the golden rule of morality, the core of the rule of Dharma! This license was a game changer!

1Recursive acronym: GNU is not unix.

3

http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/SCO%E2%80%93Linux_controversies
http://en.wikipedia.org/wiki/Linus_torvalds
http://www.gnu.org/
http://en.wikipedia.org/wiki/Richard_Stallman
http://www.fsf.org/
http://www.gnu.org
http://www.cygwin.com/
https://www.gnu.org/copyleft/gpl.html
http://en.wikipedia.org/wiki/Golden_Rule
http://en.wikipedia.org/wiki/Dharma

5 Linux-Unix-GNU philosophy

1. KISS - “Keep it simple, stupid”.
2. One program (command), one task.
3. Chain commands one after another to do “beautiful” things.

6 Some basic features of GNU/Linux

1. It is case sensitive. A is not the same as a.
2. Everything is a file in Linux.
3. Text file plays a very important role in Linux. All configurations are done by editing text files.
4. Parameters to a program are passed with a "-" (minus or tack).
5. You can stop execution of a program by pressing CTRL+C.

7 Some basic commands

1. man <commandname> will show you help about a particular command.
2. ls shows a directory listing.
3. cd changes directory
4. mkdir creates dir
5. cp copies dir or files
6. mv renames or moves a file/dir.
7. rm removes a file.

Note: rm -rf is a special command that will remove everything from the current directory without prompting.
If you accidentally execute this command in "/", it will try to wipe out everything from your computer.

7.1 Exercise

Show a man on ls. What does ls -l do? What about ls -F?

8 File globbing and wildcard

Characters "*" and "?" has special meaning to bash. The former represents “one or more” characters and
the latter represents only one, but any character. For e.g., "*.fas" represents any filename that has ".fas"
extension.

9 Redirection and piping

There are 3 channels through which a program can accept input and generate output. The input channel is
called “standard in” or STDIN. There are two types of output channels: the normal output is called “standard
out” or STDOUT. There is also a “standard error” output or STDERR.

The standard output (STDOUT) of a program can be “piped” into the standard input (STDIN) of another
program. This is commonly done using a "|" or a “pipe” symbol. For e.g.,

4

ls *.txt | wc

Here the output or STDOUT of ls is “piped” into STDIN of wc. The final result is shown onto the terminal.
In this case, it counts the number of text files in the current directory.

If you would like to redirect the output of a program to a file. This can be done in two ways:

1. > creates a new file. Caution: it will overwrite without any warning
2. ‘>>’ Appends to the existing file.

For e.g.,

ls *.txt > ../list.txt

This will create a list of text files in the current directory. This list will be created on the parent directory.

If you would like pipe the STDERR of a program you need to add a 2 before the redirection sign:

ls *.txt 2> error.log

You can even do both redirections simultaneously:

ls *.txt >../list.txt 2>error.log

10 cat

cat dumps the content of the file to output.

11 more

more is a paginator. It shows an input page by page.

12 wc

wc count the lines, words, and characters. If you are just interested in the lines use wc -l.

13 head

head shows the first few lines of a file. If you are interested in specific lines use head -n <no_of_lines>.

14 tail

Like head, tail displays the last lines of the file. A very common use of tail is to skip the first few lines of
the file. If you want to skip the first 2 lines of a file,

tail -n+3 <filename>

5

15 Directory structure

Unlike Windows Linux file systems all directories originate from a common node, called “root”, indicated by
"/". There is no "C:", "D:", etc.

15.1 Exercise:

Change your current directory using cd to "/". Show a directory listing of your "/".

16 Where I lay my head is home

The directory that you log into is your home. Also indicated by ~. The path is /home/Username.

16.1 Exercise

Do a directory listing of your home.

17 Login scripts

When you open a terminal in linux system, you are basically running a program or shell. The default shell is
bash.

1. .bashrc - runs every time a new terminal is opened.
2. .bash_profile - runs every time you login.

You can put anything you want in these files. But where are they? These are hidden files. Any filename that
starts with a “.” is hidden. You need to type ls -a to view the file.

18 alias

You can change any command by aliasing it.

alias ls="ls -l"

18.1 Exercise

Change ls to show always formatting. That means whenever you type ls, it should get silently replaced by
ls -F. You may put the command in your .bashrc file.

19 Path

1. pwd - current path
2. "." - current directory.
3. ".." - parent directory

If your path starts with "/", then the path is absolute, otherwise it is a relative path.

6

19.1 Exercise

What is the absolute path of your home? Using a relative path, go up all the way to root and come back again
in the same directory. For e.g., if you are currently in /a, the answer to the latter question will be ../a.

20 Environment variables

An environment variable is defined in bash as follows:

export foo=bar

After this bar can be referred to as $foo anywhere within the shell. You may want to define an environment
variable in .bashrc or .bash_profile. You can list all the environment variables already define for you by
running env.

21 PATH env variable

To run a command (or program), the location of the program has to be in a particular environment variable
called PATH. You can add to the existing $PATH by adding to it like this:

export PATH=$PATH:/some_dir/of/my/choice

You may add line like this in your .bashrc or .bash_profile. You can also run a program by calling it by
absolute path. To run a command from the current directory call it by its relative path like this

./my_awesome_program

You can find the absolute path of a command by using which <commandname>.

21.1 Exercise

Using which find the location of ls. Change the directory to the parent directory of ls.Overwrite the current
path by adding empty string to it. Now again do a which on ls. What happens? Run ls using a relative
path.

22 File permission

There are three kind of permissions: read, write, and execute. A file need to have executable permission in
Linux to run. You can change the permission of a file that you own by the command chmod. You can check
the permission of a file by ls -l. chmod is run like this:

chmod a+wrx filename

a means all users. + grants permission. w,r,x denotes write, read, and execute permissions.

7

22.1 Exercise

Change the permission of a file that you own to executable by everyone.

23 Compression and archiving

The two most common compression programs that you’ll encounter are gzip and bzip2. Both have identical
syntaxes. Traditionally they take .gz and .bz2 extensions, respectively. They generally operate on one file
at a time. If you just type gzip file, the compressed file will be automatically named file.gz and original
file will be replaced. Interesting thing about these programs are that they can be used by piping. For e.g.,

echo "Hello there." | gzip -9 -c >hello.gz

You can use compressed files without uncompressing it. zcat can be used for gzip and bzcat is for bzip2.

Corresponding uncompressing programs are gunzip and bunzip2.

To compress many files (including directories) you need to use tar first then use gzip/bzip2.

tar -c Downloads/ | gzip -c >downloads.tar.gz
or,
tar -cvzf downloads.tar.gz Downloads/

If you get a file with .tar.gz or .tar.bz2 extensions. Unzip them like this:

tar -xvzf myfile.tar.gz
tar -xvjf myfile.tar.bz2

24 Program compilation

There is a standard way to compile a C program in Linux. Almost all the software are distributed as .tar.gz
files. These are source codes. You should compile and install the software like this:

tar -xvzf foo.tar.gz
cd foo
./configure
make
make install

The last install step may require you switch to root.

24.1 Exercise

TopHat is splice junction aligner for RNASeq data. Download TopHat source code from http://tophat.cbcb.
umd.edu/downloads/tophat-2.0.10.tar.gz, then install the software in your machine.

8

http://tophat.cbcb.umd.edu/downloads/tophat-2.0.10.tar.gz
http://tophat.cbcb.umd.edu/downloads/tophat-2.0.10.tar.gz

25 Working with structured text file

25.1 cut

cut extracts the columns from a text file. The default field separator is tab. To extract 2nd column for a
tab-delimited text file,

cat foo.txt | cut -f 2

25.2 sort

Sort the line of a input in alphabetical order.

cat foo.txt | sort

25.3 uniq

Removes duplicate lines if the are consecutive. You have to use sort to use uniq correctly.

cat foot.txt | sort | uniq

26 wget

wget is a swiss-army-knife of web downloader. You can use it to download http or ftp files. The basic use is
very simple.

wget <URL>

But once you know how to use wget correctly, you can use it to do pretty sophisticated stuff. For e.g., to
download all the PDF files for a URL.

wget -A.pdf <URL>

or, if the URL is ftp

wget ftp://myurl.net/*.pdf

We will be using wget to download files from ftp sites like NCBI.

26.1 Exercise

If you go to the Drosophila melanogaster genome ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_
melanogaster/RELEASE_5_48/) on NCBI, you will find that files are scattered in 5 directories, each
corresponding to one chromosome:

CHR_2 CHR_3 CHR_4 CHR_Un CHR_X

9

ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/

Each of these directories contain many files. The protein sequences are in .faa files. To download all the
protein fasta files in the current directory, use

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/\
CHR_{{2..4},Un,X}/*.faa

This download works, because there only few subdirectories. If there are too many directories, then we should
use,

wget -r -A.faa ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/

But the command recreates all subdirectories. Finally this should replicate the first command,

wget -r -nH --cut-dirs=4 -A.faa ftp://ftp.ncbi.nlm.nih.gov/\
genomes/Drosophila_melanogaster/RELEASE_5_48/

In last two commands we download every ".faa" files, because each directory is D. melanogaster represents
a chromosome. But look at the D. pseudoobscura site (ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_
pseudoobscura/). The directories are,

CHR_2 CHR_3 CHR_Un mapview

Clearly mapview is not a genome directory. In this case we should download ".faa" files only from directories
that matches CHR_*.

wget -r -nH --cut-dirs=4 -A.faa -I genomes/Drosophila_pseudoobscura/CHR_* \
ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_pseudoobscura/

27 grep

grep search for a pattern in file or input.

27.1 Exercise

In the last step we downloaded a bunch of .faa files for Drosophila proteome. These files are in FASTA format;
each sequence starts with a ">" sign. We can grep for these lines to to print these lines only,

cat *.faa | grep \>

Note that we had to put a "\" character in front of ">". This is called a shell escape. What will happen if
we do not escape ">".

28 find

find searches files recursively going into a directory hierarchy.

10

ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_pseudoobscura/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_pseudoobscura/

28.1 Exercise

In the wget examples we downloaded .faa files using this command,

wget -r -A.faa \
ftp://ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/

This recreated all the intermediate directory and .faa files are deeply nested in a directory hierarchy. We
can find all the .faa files like this,

find ftp.ncbi.nlm.nih.gov/ -name "*.faa" -print

This prints the list of files:

ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_3/NT_033777.faa
ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_3/NT_037436.faa
ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_4/NC_004353.faa
ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_2/NT_033779.faa
ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_2/NT_033778.faa
ftp.ncbi.nlm.nih.gov/genomes/Drosophila_melanogaster/RELEASE_5_48/CHR_X/NC_004354.faa

Interesting thing is that we can not only find files but execute arbitrary command on each of these files. For
e.g., we can pull all the ".faa" files in the current directory like this:

find ftp.ncbi.nlm.nih.gov/ -name "*.faa" -exec cp {} . \;

29 Looping in bash shell

Sometimes it is useful to loop through a set of files. For e.g., if we would like change the filename of all the
files with ".faa" extension to ".fas" we will do this:

for i in `ls *.faa`
do

base=`basename $i .faa`
mv $i ${base}.fas

done

30 rsync

rsync is a synchronization software. The first time you use rsync it will try to copy everything to the target
directory. Next time onwards it will only copy the changed file to the target.

rsync -avP source_dir/ target_dir/

rsync can also synchronize two directories over network. If you have ssh account on a remote machine,

rsync -avP source_dir/ user@password:/target_dir/

11

31 unison

unison will make two directories identical. It performs a bidirectional synchronization.

unison -auto source_dir/ target_dir/

Like rsync unison also works over network.

unison -auto source_dir/ ssh://user@password//target_dir

32 Perl

Created by Larry Wall2, Perl has been the language of choice in bioinformatics for a long time. Perl is always
there in all GNU/Linux machine. It is an extremely powerful general purpose programming language. We
will use a little bit of Perl to write what is known as perl “one-liners”.

perl -e 'print "Hello world\n"'

This prints the text "Hello world" on the screen. Generally, if you would like loop through all the lines
given by STDIN, you would write a program like this:

while (<STDIN>) {
print;

}

But, using a one liner with -n option will put everything automatically within a while loop,

perl -ne 'print'

If you’re extracting data from a tab-delimited text file, you can use -a that autosplits the line into an array,
called @F. In Perl, an array is denoted by an @ in front of a variable and the individual element can be accessed
as $F[0], $F[1],..., etc.

32.1 Exercise

If you have downloaded the human PFAM file form the Problem 1, the column 12 has the score. We would
like to extract the lines that have score >2000.

zcat 9606.tsv.gz | tail -n+4 | perl -nae 'print if $F[11] >2000'

Note that although we are interested in column 12, we actually print $F[11], because arrays in Perl starts
with 0.

To give you a more sophisticated example, let’s extract all the GIs from the Drosophila .faa files of
chromosome 2. There are two files for chromosome 2: NT_033778.faa and NT_033779.faa. If you do a head
on the first file, it prints,

2Most quotable software guru. Take a look at his quips. He is famous for his witty and intelligent state-of-the onion talks.
Listen to his particularly brilliant 1998 talk at http://www.perl.com/pub/1998/08/show/onion.html.

12

http://en.wikipedia.org/wiki/Larry_Wall
http://en.wikipedia.org/wiki/Perl
http://en.wikiquote.org/wiki/Larry_Wall
http://www.perl.com/pub/1998/08/show/onion.html

>gi|116007464|ref|NP_001036428.1| CG17683, isoform A [Drosophila melanogaster]
MSRLSRALQLTDIDDFITPSQICIKPVQIDKARSKTGAKIKIKGDGCFEESESGNLKLNKVDISLQDCLA
CSGCITSAEEVLITQQSREELLKVLQENSKNKASEDWDNVRTIVFTLATQPILSLAYRYQIGVEDAARHL
NGYFRSLGADYVLSTKVADDIALLECRQEFVDRYRENENLTMLSSSCPGWVCYAEKTHGNFLLPYVSTTR
SPQQIMGVLVKQILADKMNVPASRIYHVTVMPCYDKKLEASREDFFSKANNSRDVDCVITSVEVEQLLSE
AQQPLSQYDLLDLDWPWSNVRPEFMVWAHEKTLSGGYAEHIFKYAAKHIFNEDLKTELEFKQLKNRDFRE
IILKQNGKTVLKFAIANGFRNIQNLVQKLKREKVSNYHFVEVMACPSGCINGGAQIRPTTGQHVRELTRK
LEELYQNLPRSEPENSLTKHIYNDFLDGFQSDKSYDVLHTRYHDVVSELSISLNINW
>gi|116007468|ref|NP_001036430.1| CG17683, isoform C [Drosophila melanogaster]
MSRLSRALQLTDIDDFITPSQPVQIDKARSKTGAKIKIKGDGCFEESESGNLKLNKVDISLQDCLACSGC

The GI’s are just after the ">" sign.

cat *.faa | perl -ne 'print $1, "\n" if ($_ =~ /^>(gi\|\d+)\|/)'

Now extract the accession number yourself.

33 Final problem set

33.1 Problem 1

PFAM is a database of domains. It also provides pre-calculated domains for all proteomes. The current
version can be found here ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam27.0/proteomes/. Each
file is a proteome identified by its taxonomic ID. Human has the ID 9606. Each of these files is tab-delimited
and the 6th column is the domain ID. Download the human proteome file using wget. After downloading
write just a single line of bash to find how many domain types (unique domains) are there in human genome.
You may use as many commands, chained in pipes, as you wish.

33.2 Problem 2

On NCBI FTP site all the bacterial genomes are present in the directory ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria/. There are hundreds of genomes in that directory. Using a single wget command download
proteomes corresponding to all the Yersinia_pestis strains. The proteomes should be downloaded in such a
way that each ".faa" files are inside separate directory. A ls should print something like this:

Yersinia_pestis_A1122_uid158119/
Yersinia_pestis_Angola_uid58485/
Yersinia_pestis_Antiqua_uid58607/
Yersinia_pestis_biovar_Medievalis_Harbin_35_uid158537/
Yersinia_pestis_biovar_Microtus_91001_uid58037/
Yersinia_pestis_CO92_uid57621/
Yersinia_pestis_D106004_uid158071/
Yersinia_pestis_D182038_uid158073/
Yersinia_pestis_KIM_10_uid57875/
Yersinia_pestis_Nepal516_uid58609/
Yersinia_pestis_Pestoides_F_uid58619/
Yersinia_pestis_Z176003_uid47317/

33.3 Problem 3

Starting from last directory write a single bash command line to count the total number of proteins in all the
Yersinia pestis strains together. You may chain as many commands as you wish.

13

ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam27.0/proteomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

	Why Linux?
	Linux is not Unix
	GNU software stack
	GPL: GNU general public license
	Linux-Unix-GNU philosophy
	Some basic features of GNU/Linux
	Some basic commands
	Exercise

	File globbing and wildcard
	Redirection and piping
	cat
	more
	wc
	head
	tail
	Directory structure
	Exercise:

	Where I lay my head is home
	Exercise

	Login scripts
	alias
	Exercise

	Path
	Exercise

	Environment variables
	PATH env variable
	Exercise

	File permission
	Exercise

	Compression and archiving
	Program compilation
	Exercise

	Working with structured text file
	cut
	sort
	uniq

	wget
	Exercise

	grep
	Exercise

	find
	Exercise

	Looping in bash shell
	rsync
	unison
	Perl
	Exercise

	Final problem set
	Problem 1
	Problem 2
	Problem 3

