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Kinetics
Thermodynamics can be used to determine whether a reaction is 
spontaneous and how much energy is involved in the reaction. 

However, answers are not determined to questions such as how long the 
process will take and which intermediate states are formed. 

Kinetic studies of a process involve correlating the time evolution of each 
molecular species to a model of the mechanism of the reaction. 
 

For reactions that proceed through a series of steps, the rates for each 
step can be determined and the slowest step, termed the rate-limiting step, 
can be identified. Examples in biological settings are the ability of enzymes 
to accelerate specific chemical processes in the cell. 



The simplest case
The simplest model of reaction considers an irreversible reaction of 
molecule A converting to molecule B: 
 

In this case the rate of a reaction involving a molecule A, which at any time 
t has the concentration A(t), is the change in the concentration or 
population of the molecule with time: 

In this context, the instantaneous probability is equivalent to a first-order 
rate constant. 

dA(t)
A(t)

= − kdt or
dA(t)

t
= − kA(t)
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In this context, the instantaneous probability is equivalent to a first-order
rate constant. The time dependence of the concentration of molecule A
can be determined by integrating this expression:

(7.5)

ln A(t) = −kt + c

A(t) = e−kt+c = ece−kt

ea+b = eaeb

The time dependence of A is seen to be exponential with the rate multi-
plying the time in the exponent. To fully determine the dependence, it is
necessary to identify the value of the constant of integration, c. The value
of c can be found by realizing that at time zero the exponential term is 1
and so the constant of integration represents the amount of the molecule
A at the initial time:

A(t = 0) = ece−k(0) = ec (7.6)

With this substitution for the constant c, the time dependence can be re-
written as:

A(t) = A(t = 0)e−kt (7.7)

A plot of the time dependence of these two states shows an exponential
decay of A and a corresponding increase of B (Figure 7.2). A classic exam-
ple of a first-order process is radioactive decay in which the rate is often
expressed in terms of the half-life, t1/2, which represents the time required
for molecule A to decay to half of its value. The time at which this hap-
pens can be written in terms of the rate constant by substituting a value
of A(t = 0)/2 for A(t) into eqn 7.7:

(7.8)
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Thermodynamics can be used to determine whether a reaction is spon-
taneous and how much energy is involved in the reaction. However, answers
are not determined to questions such as how long the process will take
and which intermediate states are formed. Although the properties of mole-
cules can be studied from understanding static properties, much of our
knowledge of the reactions that proteins and biological molecules perform
is obtained from measurement of the time dependence of each process.
Kinetic studies of a process involve correlating the time evolution of each
molecular species to a model of the mechanism of the reaction. The model
will of necessity propose specific intermediate states and specific rates for
each step. Such an analysis reveals the limitations to the rate and yield of
the reaction as well as the energetic barriers that must be overcome for the
reaction to proceed. For reactions that proceed through a series of steps,
the rates for each step can be determined and the slowest step, termed the
rate-limiting step, can be identified. By performing kinetic measurements
using different concentrations of each molecule one can determine whether
the rate-limiting step is dependent or independent of complex formation.
Once established, a model of the mechanism provides a platform for prob-
ing the biochemical factors that control the functions of proteins. Examples
of using these concepts in biological settings are the ability of enzymes
to accelerate specific chemical processes and the components that allow
proteins to serve as electron-transfer carriers in the cell.

THE RATE OF A CHEMICAL REACTION

Before proceeding too far, we consider how a reaction rate is determined
experimentally. For simplicity, this question is addressed for the simple
irreversible reaction of molecule A converting to molecule B:

A → B (7.1)

7

Kinetics and enzymes
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The half-life time
A plot of the time dependence of these two states shows an exponential 
decay of A and a corresponding increase of B. A classic example of a first-
order process is radioactive decay in which the rate is often expressed in 
terms of the half-life, t1/2, which represents the time required for molecule A 
to decay to half of its value. 
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The half-life and rate constant are inversely
related to each other and correspondingly
have inverse units. Whereas the half-life is
commonly used to characterize radioactive
processes, it is not usually used to describe
chemical reactions. Rather, a process is de-
scribed as having a lifetime that is simply the
inverse of the rate constant, or equivalently
the time at which 1/e of the initial population
has changed.

PARALLEL FIRST-ORDER REACTIONS

In many biological processes, first-order rates
are observed when a reaction involves a high-
energy molecule that relaxes spontaneously to a lower-energy state
without the involvement of another molecule. For example, such
high-energy states are created in photosynthesis due to the absorp-
tion of light energy (see Chapter 20). However, the decay may be
possible by more than one pathway and the kinetics will reflect the
possible formation of several different products.

Consider the gumballs again, with the dispenser having two slots
instead of one (Figure 7.3). Unbeknownst to the children awaiting
the dispensation of the gumballs, the slots are different sizes and so
the gumballs leave with two different rates, k1 and k2. The rate at
which the initial state A decays and states B and C increase are iden-
tified by use of a scheme in which two independent paths proceed:

(7.9)

In this case, the initial concentration of gumballs in the dispenser, [A],
can change due to loss to population B with a rate constant k1 and simul-
taneous loss to population C with a rate constant k2. The rate of change
of [A] is then described by two terms that are the product of either rate
constant k1 or k2 and the concentration of A (eqn 7.10). The increases in
the amounts of B and C are then given by the product of [A] with the
rate constants k1 and k2, respectively.

(7.10)
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Figure 7.2 Kinetic curves for a simple first-order
reaction.

Figure 7.3 A
multislot dispenser
with gumballs being
delivered through
two different slots.
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In the case of the previous reaction the 
half-life and rate constant are inversely 
related to each other



Parallel first-order reactions
In other cases, the decay may be possible by more than one pathway and 
the kinetics will reflect the possible formation of two or more different 
products with different rates.  The mechanism of a particle which decays in 
two products with different k1 and k2: 
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Figure 7.2 Kinetic curves for a simple first-order
reaction.

Figure 7.3 A
multislot dispenser
with gumballs being
delivered through
two different slots.
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For this reaction the rates can be calculated as a function of the the 
concentrations where we can replace k1+k2. with kobs 

Since each of the individual rates is first
order, the observed rate constant, kobs, for the
exponential loss of state A, will be given by
the sum of the individual rates:

(7.11)

A(t) = A(t = 0)e−kobst

Thus, the state A decays exponentially with an
observed rate that is the sum of the individual
rates (Figure 7.4). The time dependencies of
states B and C can be solved by substitution
of eqn 7.11 into eqn 7.10:

(7.12)

If the states B and C are assumed to not be present initially but only 
be generated by the decay of state A, then [B(t = 0)] = [C(t = 0)] = 0 
and eqn 7.12 can be revised by separating variables and integrating to
yield:

(7.13)

Thus, both B and C start at zero concentration and increase exponentially
with a rate kobs (Figure 7.4). The ratio of these two states is always equal
to the ratio of the two forward rates:

(7.14)

The concentration of A decreases exponentially while the concentrations
of B and C increase exponentially. Assuming that k1 is larger than k2, the
amount of B is always greater than that of C, as shown in Figure 7.4.
Since A is being converted into both B and C, the final concentrations of
B and C individually will always be less than the initial amount of A.
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Figure 7.4 Kinetic curves for two parallel
processes.
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The half-life and rate constant are inversely
related to each other and correspondingly
have inverse units. Whereas the half-life is
commonly used to characterize radioactive
processes, it is not usually used to describe
chemical reactions. Rather, a process is de-
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inverse of the rate constant, or equivalently
the time at which 1/e of the initial population
has changed.
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Since each of the individual rates is first
order, the observed rate constant, kobs, for the
exponential loss of state A, will be given by
the sum of the individual rates:

(7.11)

A(t) = A(t = 0)e−kobst

Thus, the state A decays exponentially with an
observed rate that is the sum of the individual
rates (Figure 7.4). The time dependencies of
states B and C can be solved by substitution
of eqn 7.11 into eqn 7.10:

(7.12)

If the states B and C are assumed to not be present initially but only 
be generated by the decay of state A, then [B(t = 0)] = [C(t = 0)] = 0 
and eqn 7.12 can be revised by separating variables and integrating to
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(7.13)

Thus, both B and C start at zero concentration and increase exponentially
with a rate kobs (Figure 7.4). The ratio of these two states is always equal
to the ratio of the two forward rates:

(7.14)

The concentration of A decreases exponentially while the concentrations
of B and C increase exponentially. Assuming that k1 is larger than k2, the
amount of B is always greater than that of C, as shown in Figure 7.4.
Since A is being converted into both B and C, the final concentrations of
B and C individually will always be less than the initial amount of A.
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Figure 7.4 Kinetic curves for two parallel
processes.
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The Order of a Reaction
A simple second-order reaction is usually considered to involve two steps: 
the two components, A and B, must first form a complex AB, and then the 
reaction proceeds to form the state C: 

Although the reaction order may be considered from a molecular stand- 
point, in practice the order is an empirical quantity and may have a range of 
values. In general, the rate may depend upon the concentrations of the 
reactants according to: 

where the values of n and m will depend upon the specifics of the reaction. 
For example, if the complex formation involves two molecules of A and one 
of B, then n = 2 and m = 1 overall the reaction is third order. 

The second step of the process is a first-order reaction with some instan-
taneous probability. However, to consider the overall process, this prob-
ability must be multiplied by the probability that the complex forms 
during an inter9al of time, dt. From the standpoint of molecule B, if any
molecule A enters an interaction volume around B, then the complex
may be formed. For simplicity, molecule A is assumed to enter the inter-
action volume and either form the complex or leave rapidly compared
to the time required for the second process to occur. In this case, the 
distribution of A will always be random, and the number of A molecules
within the interaction volume is equal to the product of the concentra-
tion of A and the interaction 9olume around B, VB. The formation of the
product, C, is given by the first-order rate expression:

(7.19)

The concentration of the complex is given by the product of the con-
centration of B and the number of molecules of A within VB, yielding:

(7.20)

the term kVB is usually referred to as the second-order rate constant for
the reaction.

THE ORDER OF A REACTION
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point, in practice the order is an empirical quantity and may have a range
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of values. In general, the rate may depend upon the concentrations of
the reactants according to:

(7.21)

where the values of n and m will depend upon the specifics of the reac-
tion. For example, if the complex formation involves two molecules of
A and one of B, then n = 2 and m = 1:

2A + B → C

(7.22)

If the reaction is reversible then both the forward rate constant, kf, and
the backward rate constant, kb, must be considered:

(7.23)

In each case the units will match the order of the rate constant, with
first-order rates having units of s−1, and second-order rates have units of
M−1 s−1.

REACTIONS THAT APPROACH EQUILIBRIUM

From a thermodynamic viewpoint, a reaction reaches equilibrium when
the ratio of the products and reactants is at the lowest Gibbs energy for
the system (Chapter 6). Equilibrium can also be viewed from a kinetic
viewpoint as occurring when the rate of the forward reaction is equal to
the reverse reaction. For example, the reaction of A converting to B is
at equilibrium when the rate of change of both components is zero:

(7.24)

The equilibrium constant can be related to the rates by expressing the
change in A in terms of the forward and backward reactions (eqn 7.16)
and setting this term equal to zero:
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change concentration due to a very fast forward rate for the second step
with a backward rate so small that it can be neglected:

(7.17)

While the specifics of sequential reactions may be complex, the changes
in states will follow a general trend. The concentration of A decreases 
in an exponential manner. Assuming that B is not present initially, it 
will start to increase from zero, reach a maximum, and then decline to
zero as C begins to form. Assuming that C also is not present initially,
the concentration of C will start at zero and slowly begin to rise. In con-
trast to the pattern of B reaching a maximum and then decreasing, the
concentration of C will continue to increase with time. After a long time,
the concentrations for each state will reach limiting values as the reactions
approach equilibrium.

For reactions involving sequential steps, assignment of the specific reac-
tion scheme is often difficult as concentration profiles of all states are often
not all available. For example, if the only experimental observable is B,
then it is often difficult to distinguish between the case when kf 1 >> k2 and
the opposite case when kf 1 << k2. In other cases when only A and C are
observable, it may be difficult to verify experimentally the presence of the
intermediate state. If the rate for the second step is much faster than the
forward rate for the first step, then as state B is formed it is transformed
rapidly into C and the concentration of B remains low (Figure 7.6). Only
if the second rate is slow will the intermediate state build up. For these
reasons, proper assignment of the mechanism for complex biological pro-
cesses remains a challenging issue.

SECOND-ORDER REACTIONS

A simple second-order reaction is usually considered to involve two steps:
the two components, A and B, must first form a complex AB, and then
the reaction proceeds to form the state C:

A + B ↔ AB → C (7.18)
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Reaction and Equilibrium
• Thermodynamics: A reaction reaches equilibrium when the ratio of the 

products and reactants is at the lowest Gibbs energy for the system 

• Kinetics: the rate of the forward reaction is equal to the reverse reaction. 

of values. In general, the rate may depend upon the concentrations of
the reactants according to:

(7.21)

where the values of n and m will depend upon the specifics of the reac-
tion. For example, if the complex formation involves two molecules of
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If the reaction is reversible then both the forward rate constant, kf, and
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(7.25)

kf[A] = kb[B]

Thus, the equilibrium constant for a reaction, Keq, is equal to the ratio of
the forward and backward rates for a reaction.

ACTIVATION ENERGY

For some reactions, the change in the Gibbs energy is a large negative
number and hence the overall reaction is thermodynamically favorable.
However, the rate of product formation may still be slow. In these cases,
the reaction usually requires the formation of an intermediate or transi-
tional state that is energetically unfavorable. For enzymes, the intermediate
state is not a real state but only a transitional one that lives for a short time.
For a reaction with the reactants A and B and product C, the short-lived
intermediate is denoted as [AB]‡:

A + B ↔ AB‡ → C (7.26)

The reaction can be shown schematically by plotting the energy of each
step against what is termed the reaction coordinate, which represents
changes in the nuclear conformation of each state. The intermediate state
is assumed to be in rapid equilibrium with the product state due to the
large free energy difference (Figure 7.7).

The overall rate is limited by the formation of the intermediate state
because the increase in Gibbs energy for the intermediate represents an
energy barrier. The rate to overcome the
energy difference between the initial and
intermediate state, termed the acti9ation
energy, EA, is given by:

k = Ae−EA/kBT (7.27)

where A is the rate that would be observed
if EA = 0. This rate dependence arises from 
a statistical determination of the probability
that the system has an energy greater than
EA to overcome the barrier associated with 
the formation of an intermediate state. For 
an activated process, the activation energy is
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Thus, the equilibrium constant for a reaction, Keq, is equal to the ratio of the 
forward and backward rates for a reaction. 



Activation Energy
For some reactions, the change in the Gibbs energy is a large negative 
(spontaneous) however, the rate of product formation may be slow. In 
these cases, the reaction usually requires the formation of an intermediate 
or transitional state that is energetically unfavorable.
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The intermediate state because the 
increase in Gibbs energy represents an 
energy barrier. The rate to overcome the  
energy difference between the initial and 
intermediate state, termed the activation 
energy, EA, is given by: 



How it is determined?
The activation energy can be determined by measurement of the 
temperature dependence of the reaction. 144 PART I THERMODYNAMICS AND KINETICS

usually determined by measurement of the temperature depend-
ence of the reaction. The temperature dependence, known as
an Arrhenius equation, is most easily expressed as a linear equa-
tion by using the logarithm of the rate (Figure 7.8):

(7.28)

y = mx + b; y = ln k; m = −(EA/kB), and x = 1/T

The activation energy represents an energy barrier that must
be overcome if the reaction is to proceed. The dependence of
the time evolution of the component concentrations is highly
dependent upon the height of this barrier. Whereas the detailed
changes are highly specific to the various rates, provided that

the reaction can proceed to completion, some general comments can be
made (Figure 7.8). The concentration of A will consistently decrease with
time and the concentration of C will increase. The amount of the inter-
mediate AB state will initially increase but will reach a peak at some point
and then begin to decrease as the amount of C increases. The logarithm
of the rate decreases linearly with a slope given by EA/kB, with a large slope
corresponding to a large activation energy.

RESEARCH DIRECTION: ELECTRON TRANSFER I: ENERGETICS

Electron transfer plays a key role in many metabolic processes, including
respiration (Chapter 9) and photosynthesis (Chapter 20). In some cases,
electron transfer occurs as a second-order reaction when the electron donor
is not normally part of the protein that contains the electron acceptor.
Such cases are found when proteins are part of a metabolic pathway, 
as in respiration where cytochrome serves as an electron carrier between
two complexes. For these electron-transfer reactions, the overall rate will
be dictated by the diffusion of the carrier as the electron transfer does
not occur until a complex is formed. In other cases, a protein has more
than one cofactor as both the electron donor and acceptor are part of a
large complex. The theory presented is applicable to either case: a protein
with a bound donor and acceptor or a protein–protein complex that has
formed transiently.

Electron transfer occurs between an electron donor, D, and electron acceptor,
A, that can be separated by relatively large distances of up to 25 Å (Marcus
& Sutin 1985; Murphy et al. 1993; Giese 2002; Page et al. 2003; Gray &
Winkler 2005; Lin et al. 2005; Miyashita et al. 2005):
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Figure 7.8 When a
reaction proceeds via
an activation energy,
lnk varies inversely
with temperature,
with the slope being
proportional to the
activation energy.
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The temperature dependence, known 
as an Arrhenius equation, is most 
easily expressed as a linear equation 
by using the logarithm of the rate 
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Enzymes
One of the fundamental conditions for life is that an organism must be able 
to catalyze chemical reactions efficiently and selectively. Such functions 
are performed in cells by highly specialized proteins called enzymes. 

Enzymes not only have a remarkable degree of specificity for their 
substrates, but they also accelerate reactions tremendously under mild 
conditions of pH, temperature, and pressure. 
 

not only have a remarkable degree of specificity for their substrates, but
they also accelerate reactions tremendously under mild conditions of pH,
temperature, and pressure. As early as the 1800s, scientists such as Louis
Pasteur noted that biological reactions such as the fermentation of sugar
into alcohol required biological catalysts to be present in organisms. In
1897, Eduard Buchner discovered that yeast extracts could perform 
fermentation, establishing that the catalysts were functional outside of
the cell and hence that activity did not require that the catalyst be part
of a living cell. In the early 1900s, the term enzyme was coined by Frederick
Kuhne and these catalysts were established as being proteins. By the 
latter part of the century, thousands of enzymes were isolated and general
mechanisms of enzymes were elucidated.

While some enzymes consist of only polypeptide chains, many enzymes
contain additional chemical components, called cofactors. A cofactor may be a
simple inorganic ion, such as Cu2+ or Mg2+, or may be a cluster of inorganic
ions as found in nitrogenase (Chapter 15). Alternatively, the cofactor 
may be a complex organic or metallo-organic molecule, such as the heme
cofactor (ferriprotoporphyrin) found in catalase. A complete, catalytically
active enzyme is referred to as a holoenzyme, and the protein part alone
is termed the apoenzyme. Many enzymes are named according to their
enzymatic function. Thus, the enzyme urease catalyzes the hydrolysis 
of urea while DNA polymerase catalyzes the DNA polymerization from
nucleotides. In general, enzymes can be grouped into six major classes
(Table 7.1).

Enzymes lower the activation energy

Enzymes accelerate reactions that have a substantial activation energy 
by modifying the reaction rates. The Gibbs energy difference between the

148 PART I THERMODYNAMICS AND KINETICS

Table 7.1
Classification of enzymes.

Enzyme class Enzyme function

Oxidoreductase Transfer of electrons
Transferase Group-transfer reactions
Hydrolase Hydrolysis reactions
Lyase Addition of groups to double bonds or formation of

double bonds by removal of groups
Isomerase Transfer of groups within molecules to yield isomeric

forms
Ligase Formation of C–C, C–S, C–O, and C–N bonds

coupled to ATP
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Enzyme mechanism 
Enzymes accelerate reactions that have a substantial activation energy by 
modifying the reaction rates. The Gibbs energy difference between the 
initial and final states is not altered and the equilibrium is not changed. 
Rather, enzymes alter the transitional state of the reaction such that the 
activation energy is significantly decreased 

initial and final states is not altered and the
equilibrium is not changed. Rather, enzymes
alter the transitional state of the reaction such
that the activation energy is significantly
decreased (Figure 7.11). Since the rate is
exponentially dependent upon the activation
energy, reductions of EA lead to substantial
increases in the rate. For example, catalase is
an enzyme that catalyzes the decomposition
of hydrogen peroxide:

(7.34)

The reaction is exergonic with a Gibbs energy
difference of −103.1 kJ mol−1. However, the
reaction essentially does not proceed due to
a large activation energy of 71 kJ. The enzyme
lowers EA from 71 to 8 kJ, resulting in an increase in rate by a factor of
more than 1015.

While the degree of rate increase is unusually large for catalase, enzymes
generally improve reaction rates by many orders of magnitude. Consider
the overall reaction to be described by an equilibrium between the initial
and final states, A and B, as described in eqns 7.35 and 7.36:

(7.35)

(7.36)

The equilibrium constant can be expressed in terms of the Gibbs energy
change for the reaction (eqn 3.20):

Keq = e−∆G/kT (7.37)

where the product RT has a value of (8.315 J/(K mol))(298 K) or 
2.47 kJ mol−1 at room temperature. By lowering the Gibbs energy differ-
ence, the equilibrium constant shifts towards the products (Table 7.2). The
decrease in the equilibrium constant corresponds primarily to a decrease in
the forward rate constant for the reaction. The rate enhancements achieved
by enzymes are in the range of 5–17 orders of magnitude. Enzymes are
able to achieve this significant rate enhancement while remaining very
discriminating among substrates.
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Figure 7.11 An energy diagram showing how
enzymes increase reaction rates by lowering the
activation energy from an uncatalyzed value 
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Although the specific mechanism by which 
enzymes stabilize the transitional state is 
unique for each protein, the enzyme 
promotes multiple weak interactions with the  
substrate that are specifically positioned 
such that binding is optimized for the 
intermediate state. 



Michaelis-Menten Mechanism 
The basis of the Michaelis–Menten mechanism is the transient formation of a 
enzyme–substrate complex, ES. 

The rate of the overall reaction is determined by the second step and is 
proportional to the concentration of the complex. 

Experimentally, enzyme reactions are often probed by measuring the initial 
rate, or initial velocity, which is denoted by V0, when the concentration of the 
substrate is much greater than the concentration of the enzyme.

Structural fluctuations may not only
influence the binding of substrates to
the active sites but they may also play 
a fundamental role in establishing the
energetics of catalysis (Eisenmesser et al.
2005; Boehr et al. 2006; Vendruscolo &
Dobson 2006). An enzyme with no sub-
strate may be regarded as an inherently
flexible molecule; however, the fluctua-
tions may not be entirely random. Rather,
the energies of the different dynamical
conformations may map out a well-
defined energy profile (Figure 7.13). The
binding of the substrate results in a differ-
ent energy landscape for the enzyme–
substrate complex. A model for the role
of dynamics in facilitating catalysis is for
these two energy landscapes to have similar motions that have different
relative populations. Thus, an enzyme with no substrate would have a
dominant population, A, but only sample with small probability other,
higher-energy states. Binding of the substrate would shift the domin-
ant population from A, through an intermediate state B, towards the 
catalytic state C. According to a NMR study (Boehr et al. 2006), the enzyme
dihydrofolate reductase has been found to undergo such motions.
Dihydrofolate reductase is a well-characterized enzyme that catalyzes 
the reduction of 7,8-dihydrofolate to 5,6,7,8-tetrahydrofolate. The kinetic
mechanism of this enzyme is coupled with the conversion of nicotinamide
adenine dinucleotide phosphate, NADPH, to NADP+. Substrate and cofac-
tor exchange were found to occur through excited energy states of the
enzyme with the modulation of the energy landscape funneling the enzyme
through its kinetic path.

MICHAELIS–MENTEN MECHANISM

The basis for mechanisms involving formation of an enzyme–substrate
complex was developed originally in the early 1900s, with a general theory
of enzyme action proposed by Leonor Michaelis and Maud Menten in
1913. They postulated that the enzyme, E, and the substrate, S, form a
complex, ES, in a fast reversible step (Figure 7.14) that yields the free
enzyme and product, P, in a slower step:

(7.38)
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Figure 7.13
The energetics of
enzymes may evolve
as an enzyme
undergoes dynamical
changes that favor
the transitional 
state (C) instead of
the initial state (A)
after binding of a
substrate. Modified
from Vendruscolo
and Dobson (2006).
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Because the rate-limiting step is the second reaction,
the rate of the overall reaction is determined by the
second step and is proportional to the concentration
of the complex.

Experimentally, enzyme reactions are often probed
by measuring the initial rate, or initial 9elocity, which
is denoted by V0, when the concentration of the sub-
strate is much greater than the concentration of the
enzyme. The use of the initial velocity allows the 
use of the assumption that changes of the substrate
concentration are negligible. The initial velocity
usually has a linear dependence on the substrate 
concentration at low substrate concentrations and
approaches an asymptotic value denoted by Vmax at
high concentrations (Figure 7.15).

This dependence of the initial velocity on the
substrate concentration can be qualitatively under-
stood in terms of the Michaelis–Menten model.
At any given point in time, the enzyme is present
both as a free enzyme and a complex with the sub-
strate. At low substrate concentrations, most of the
enzyme is present in the free form and the rate is
proportional to the substrate concentration because
the complex formation is favored as the substrate 

concentration is increased. The maximum velocity is approached at high
substrate concentrations when essentially all of the enzyme is present as
the complex. Under these conditions the enzyme is said to be saturated
with its substrate, so the changes in the substrate concentration have very
little effect.

The dependence can also be quantified using the Michaelis–Menten
model. For simplicity, assume that once the product is released from the
enzyme, rebinding is unlikely and so the back reaction for the second

step, kb2, is negligible. The initial velocity is then
determined by the product of the forward 
rate constant for the second step, kf2, and the
concentration of the complex, [ES]:

V0 = kf 2[ES] (7.39)

Since the concentration of the complex is
usually not determined readily, an expres-
sion for this concentration in terms of the
experimental observables must be determined.
The rate of complex formation is given by the
product of the first forward rate constant, kf1,
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strate is much greater than the concentration of the
enzyme. The use of the initial velocity allows the 
use of the assumption that changes of the substrate
concentration are negligible. The initial velocity
usually has a linear dependence on the substrate 
concentration at low substrate concentrations and
approaches an asymptotic value denoted by Vmax at
high concentrations (Figure 7.15).

This dependence of the initial velocity on the
substrate concentration can be qualitatively under-
stood in terms of the Michaelis–Menten model.
At any given point in time, the enzyme is present
both as a free enzyme and a complex with the sub-
strate. At low substrate concentrations, most of the
enzyme is present in the free form and the rate is
proportional to the substrate concentration because
the complex formation is favored as the substrate 

concentration is increased. The maximum velocity is approached at high
substrate concentrations when essentially all of the enzyme is present as
the complex. Under these conditions the enzyme is said to be saturated
with its substrate, so the changes in the substrate concentration have very
little effect.

The dependence can also be quantified using the Michaelis–Menten
model. For simplicity, assume that once the product is released from the
enzyme, rebinding is unlikely and so the back reaction for the second

step, kb2, is negligible. The initial velocity is then
determined by the product of the forward 
rate constant for the second step, kf2, and the
concentration of the complex, [ES]:
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sion for this concentration in terms of the
experimental observables must be determined.
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The initial velocity is then determined by the 
product of the forward rate constant for the 
second step, kf2, and the concentration of 
the complex, [ES]: 



Michaelis constant 
For the determination of V0 we need to calculate the concentration of the 
complex ES, We describe the kinetics of each step and assume that the system 
is in the steady-state 
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In the last expression, the term (kb1 + kf 2)/kf 1

has been replaced with the Michaelis constant,
KM. Since the initial velocity is proportional to
the concentration of the complex (eqn 7.39),
the initial velocity can now be written in terms
of the total enzyme and substrate concentra-
tions. Because the maximum 9elocity, Vmax,
occurs when the enzyme is saturated – [ES]
= [Etotal] – the maximum velocity defined in
terms of the total enzyme concentration can
substituted into the expression for the initial
velocity:

Vmax = kf 2[ESsaturation] = kf 2[Etotal] (7.45)

This final expression for the initial velocity is termed the Michaelis–Menten
equation. The interpretation of this relationship in terms of the observables
(Figure 7.16) can be established using two different cases. First, at very
high concentrations of the substrate, the substrate concentration is much
larger than KM, and so the initial velocity is seen to approach the maximum
velocity as expected:

(7.46)

The second special situation is when the initial velocity is exactly half the
maximum velocity, as at this point the substrate concentration exactly
equals KM. First, the initial velocity is set equal to half of the maximum
velocity:

(7.47)

then both sides of the equation are divided by Vmax:

(7.48)
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dependence of the
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maximum.
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the concentration of the free enzyme, [E], and the concentration of the
substrate, [S]:

(7.40)

Whereas the first step results in an increase in the amount of the com-
plex in the forward direction, the complex concentration will decrease
due to the back reaction of the first step and the product formation in
the second reaction. Thus, the rate of loss of the concentration of the
complex is given by the sum of these two terms:

(7.41)

In order to make use of these relationships, a critical assumption is invoked,
termed the steady-state assumption. The initial rate of the reaction is assumed
to occur with a constant concentration of the complex; that is, the rates
of formation and loss of the complex are equal. With this assumption the
two rates can be equated:

(7.42)

kf 1[E][S] = kb1[ES] + kf 2[ES]

The concentration of the free enzyme can be written as the total con-
centration of the enzyme, [Etotal], minus the amount of the complex, and
this term can be substituted into eqn 7.42 and the relationship can be
rewritten to provide the concentration of the complex in terms of the
experimental observables, the total enzyme concentration, and the amount
of the substrate:

[E] = [Etotal] − [ES] (7.43)

kf 1([Etotal] − [ES])[S] = kb1[ES] + kf 2[ES]

kf 1[Etotal][S] − kf 1[ES][S] = (kb1 + kf 2)[ES]

kf 1[Etotal][S] = (kb1 + kf 2 + kf 1[S])[ES]

Solving this equation for the concentration of the complex yields:

(7.44)
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Whereas the first step results in an increase in the amount of the com-
plex in the forward direction, the complex concentration will decrease
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kf 1[E][S] = kb1[ES] + kf 2[ES]
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centration of the enzyme, [Etotal], minus the amount of the complex, and
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the concentration of the free enzyme, [E], and the concentration of the
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In the last expression, the term (kb1 + kf 2)/kf 1

has been replaced with the Michaelis constant,
KM. Since the initial velocity is proportional to
the concentration of the complex (eqn 7.39),
the initial velocity can now be written in terms
of the total enzyme and substrate concentra-
tions. Because the maximum 9elocity, Vmax,
occurs when the enzyme is saturated – [ES]
= [Etotal] – the maximum velocity defined in
terms of the total enzyme concentration can
substituted into the expression for the initial
velocity:

Vmax = kf 2[ESsaturation] = kf 2[Etotal] (7.45)

This final expression for the initial velocity is termed the Michaelis–Menten
equation. The interpretation of this relationship in terms of the observables
(Figure 7.16) can be established using two different cases. First, at very
high concentrations of the substrate, the substrate concentration is much
larger than KM, and so the initial velocity is seen to approach the maximum
velocity as expected:

(7.46)

The second special situation is when the initial velocity is exactly half the
maximum velocity, as at this point the substrate concentration exactly
equals KM. First, the initial velocity is set equal to half of the maximum
velocity:

(7.47)

then both sides of the equation are divided by Vmax:

(7.48)
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Because the maximum velocity, Vmax, occurs 
when the enzyme is saturated the maximum 
velocity defined in terms of the total enzyme 
concentration can substituted into the 
expression for the initial velocity: 

the concentration of the free enzyme, [E], and the concentration of the
substrate, [S]:

(7.40)

Whereas the first step results in an increase in the amount of the com-
plex in the forward direction, the complex concentration will decrease
due to the back reaction of the first step and the product formation in
the second reaction. Thus, the rate of loss of the concentration of the
complex is given by the sum of these two terms:
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In order to make use of these relationships, a critical assumption is invoked,
termed the steady-state assumption. The initial rate of the reaction is assumed
to occur with a constant concentration of the complex; that is, the rates
of formation and loss of the complex are equal. With this assumption the
two rates can be equated:
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The concentration of the free enzyme can be written as the total con-
centration of the enzyme, [Etotal], minus the amount of the complex, and
this term can be substituted into eqn 7.42 and the relationship can be
rewritten to provide the concentration of the complex in terms of the
experimental observables, the total enzyme concentration, and the amount
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[E] = [Etotal] − [ES] (7.43)

kf 1([Etotal] − [ES])[S] = kb1[ES] + kf 2[ES]

kf 1[Etotal][S] − kf 1[ES][S] = (kb1 + kf 2)[ES]
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Whereas the first step results in an increase in the amount of the com-
plex in the forward direction, the complex concentration will decrease
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In order to make use of these relationships, a critical assumption is invoked,
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(7.44)
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Estimating KM 
The Michaelis–Menten equation can be transformed into a linear 
relationship by making use of parameters other than the initial velocity 
and substrate concentration for the graph. 

y = mx + b;

y =
1
V0

; m =
KM

Vmax
, and x =

1
S

Using the following transformation and 
fitting the curve KM and Vmax can be 
estimated
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Thus, the value of the maximum velocity can be found by an extrapolation
of the curve, and the value of KM is equal to the substrate concentration
at half-maximum velocity.

LINEWEAVER–BURK EQUATION

The Michaelis–Menten equation can be transformed into a linear rela-
tionship by making use of parameters other than the initial velocity and
substrate concentration for the graph. One common relationship is derived
by taking the reciprocal of the Michaelis–Menten equation (eqn 7.45):

(7.49)

y = mx + b where y = 1/V0, m = KM/Vmax, and b = 1/Vmax

This form of the relationship is known as the Linewea9er–Burk equation.
For enzymes following the Michaelis–Menten mechanism, a plot of the
reciprocal of the initial velocity against the reciprocal of the substrate 
concentration, a so-called double-reciprocal plot, produces a straight line
(Figure 7.17). The slope of the plot provides the value of KM and the y
intercept provides the value of the maximum velocity. The advantage of
this type of plot is that it allows the data to be
interpreted in terms of a simple linear relation-
ship and provides an accurate estimate of the
maximum velocity. Other transformations of the
Michaelis–Menten equation have been derived,
each of which is useful in analyzing certain types
of enzyme data.

ENZYME ACTIVITY

The mechanism of any given enzyme may be much
more complex than the simple two-step model.
However, enzymes usually do follow the relation-
ship described by the Michaelis–Menten equation,
although the interpretation of the resulting para-
meters depends upon the specific mechanism. For
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Figure 7.17
A double-reciprocal
plot for enzymes
with the slope equal
to KM/Vmax and a y
intercept of 1/Vmax.
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Thus, the value of the maximum velocity can be found by an extrapolation
of the curve, and the value of KM is equal to the substrate concentration
at half-maximum velocity.

LINEWEAVER–BURK EQUATION

The Michaelis–Menten equation can be transformed into a linear rela-
tionship by making use of parameters other than the initial velocity and
substrate concentration for the graph. One common relationship is derived
by taking the reciprocal of the Michaelis–Menten equation (eqn 7.45):

(7.49)

y = mx + b where y = 1/V0, m = KM/Vmax, and b = 1/Vmax

This form of the relationship is known as the Linewea9er–Burk equation.
For enzymes following the Michaelis–Menten mechanism, a plot of the
reciprocal of the initial velocity against the reciprocal of the substrate 
concentration, a so-called double-reciprocal plot, produces a straight line
(Figure 7.17). The slope of the plot provides the value of KM and the y
intercept provides the value of the maximum velocity. The advantage of
this type of plot is that it allows the data to be
interpreted in terms of a simple linear relation-
ship and provides an accurate estimate of the
maximum velocity. Other transformations of the
Michaelis–Menten equation have been derived,
each of which is useful in analyzing certain types
of enzyme data.

ENZYME ACTIVITY

The mechanism of any given enzyme may be much
more complex than the simple two-step model.
However, enzymes usually do follow the relation-
ship described by the Michaelis–Menten equation,
although the interpretation of the resulting para-
meters depends upon the specific mechanism. For
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At the half-time

Exercise 1
Consider 1M solution of reactant A following second order reaction 
with a rate constant of 10-3 M-1s-1 what is the  half-life time? What is 
the difference with respect to a first order reaction?

A(t)
A(t0)

= 0.5

2A → A2

−∫
x

x0

1
x2

dx = [ 1
x ]

x

x0

=
1
x

−
1
x0

Suggestion:  Write the variation of the concentration of A ([A]) as a 
function of the square of the [A], transform the equation and use the 
integral below to calculate the half-life time.

The differential equation for the kinetic of A is
dA(t)

dt
= − kA2



Exercise 2
Given the following points for an enzyme/substrate reaction following 
the Michaelis-Menten kinetics calculate the values of KM and Vmax.

y = mx + b; y =
1
V0

; m =
KM

Vmax
, and x =

1
S

[S] (𝜇M) V0 (𝜇M/min)

208 1.1

417 2.5

909 4.1

1429 5.1

Suggestion: Consider the Eq. 1 and use the transformations below 
to fit the points to a linear curve (Eq. 2).
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Thus, the value of the maximum velocity can be found by an extrapolation
of the curve, and the value of KM is equal to the substrate concentration
at half-maximum velocity.

LINEWEAVER–BURK EQUATION

The Michaelis–Menten equation can be transformed into a linear rela-
tionship by making use of parameters other than the initial velocity and
substrate concentration for the graph. One common relationship is derived
by taking the reciprocal of the Michaelis–Menten equation (eqn 7.45):

(7.49)

y = mx + b where y = 1/V0, m = KM/Vmax, and b = 1/Vmax

This form of the relationship is known as the Linewea9er–Burk equation.
For enzymes following the Michaelis–Menten mechanism, a plot of the
reciprocal of the initial velocity against the reciprocal of the substrate 
concentration, a so-called double-reciprocal plot, produces a straight line
(Figure 7.17). The slope of the plot provides the value of KM and the y
intercept provides the value of the maximum velocity. The advantage of
this type of plot is that it allows the data to be
interpreted in terms of a simple linear relation-
ship and provides an accurate estimate of the
maximum velocity. Other transformations of the
Michaelis–Menten equation have been derived,
each of which is useful in analyzing certain types
of enzyme data.

ENZYME ACTIVITY

The mechanism of any given enzyme may be much
more complex than the simple two-step model.
However, enzymes usually do follow the relation-
ship described by the Michaelis–Menten equation,
although the interpretation of the resulting para-
meters depends upon the specific mechanism. For
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Thus, the value of the maximum velocity can be found by an extrapolation
of the curve, and the value of KM is equal to the substrate concentration
at half-maximum velocity.

LINEWEAVER–BURK EQUATION

The Michaelis–Menten equation can be transformed into a linear rela-
tionship by making use of parameters other than the initial velocity and
substrate concentration for the graph. One common relationship is derived
by taking the reciprocal of the Michaelis–Menten equation (eqn 7.45):

(7.49)

y = mx + b where y = 1/V0, m = KM/Vmax, and b = 1/Vmax

This form of the relationship is known as the Linewea9er–Burk equation.
For enzymes following the Michaelis–Menten mechanism, a plot of the
reciprocal of the initial velocity against the reciprocal of the substrate 
concentration, a so-called double-reciprocal plot, produces a straight line
(Figure 7.17). The slope of the plot provides the value of KM and the y
intercept provides the value of the maximum velocity. The advantage of
this type of plot is that it allows the data to be
interpreted in terms of a simple linear relation-
ship and provides an accurate estimate of the
maximum velocity. Other transformations of the
Michaelis–Menten equation have been derived,
each of which is useful in analyzing certain types
of enzyme data.

ENZYME ACTIVITY

The mechanism of any given enzyme may be much
more complex than the simple two-step model.
However, enzymes usually do follow the relation-
ship described by the Michaelis–Menten equation,
although the interpretation of the resulting para-
meters depends upon the specific mechanism. For
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