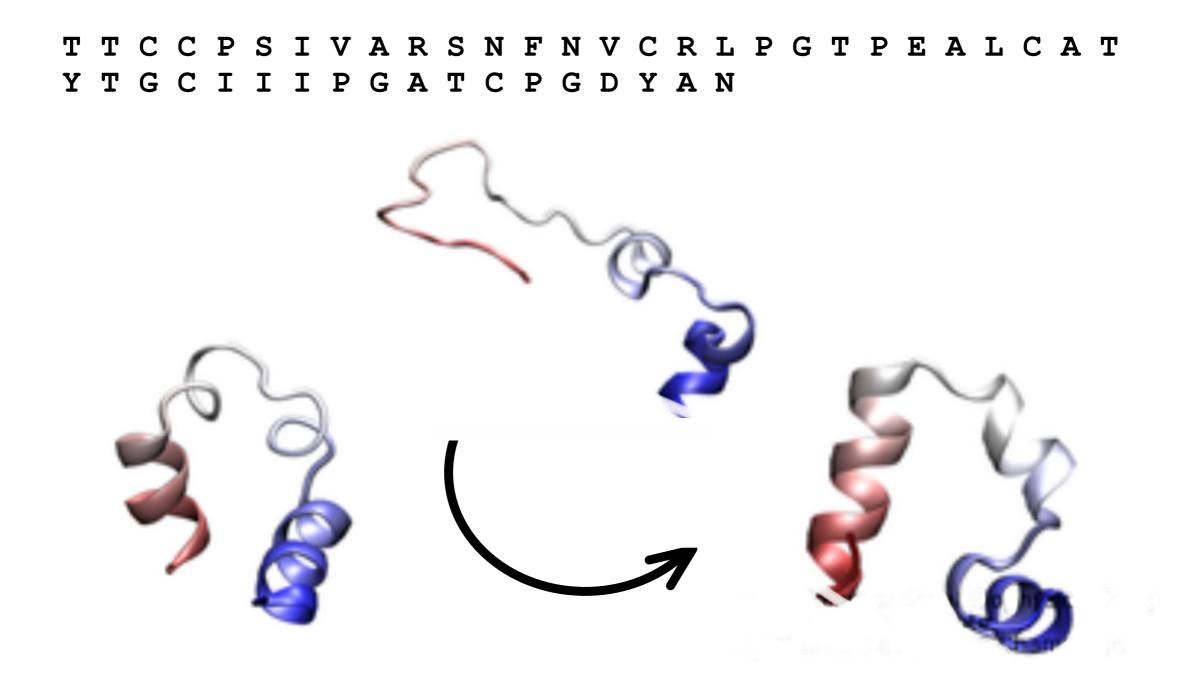
Protein Structure Analysis

Laboratory of Bioinformatics I Module 2

Emidio Capriotti http://biofold.org/

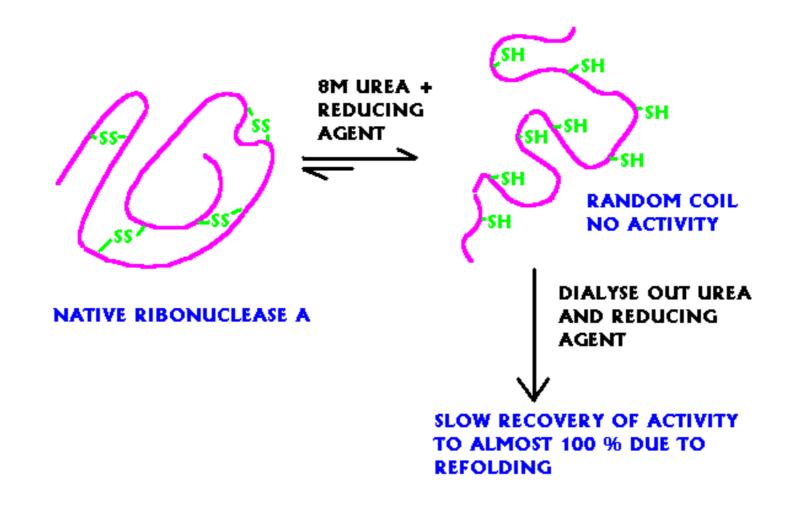
Department of Pharmacy and Biotechnology (FaBiT) University of Bologna



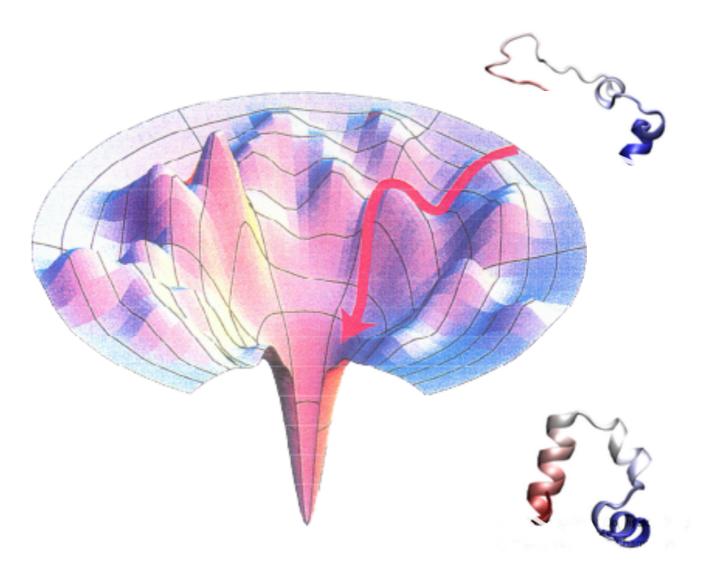
Molecular biology data

	GenBank:	255,669,865
>BGAL_SULSO BETA-GALACTOSIDASE Sulfolobus solfataricus. MYSFPNSFRFGWSQAGFQSEMGTPGSEDPNTDWYKWVHDPENMAAGLVSG DLPENGPGYWGNYKTFHDNAQKMGLKIARLNVEWSRIFPNPLPRPQNFDE SKQDVTEVEINENELKRLDEYANKDALNHYREIFKDLKSRGLYFILNMYH WPLPLWLHDPIRVRRGDFTGPSGWLSTRTVYEFARFSAYIAWKFDDLVDE YSTMNEPNVVGGLGYVGVKSGFPPGYLSFELSRRHMYNIIQAHARAYDGI KSVSKKPVGIIYANSSFQPLTDKDMEAVEMAENDNRWWFFDAIIRGEITR GNEKIVRDDLKGRLDWIGVNYYTRTVVKRTEKGYVSLGGYGHGCERNSVS LAGLPTSDFGWEFFPEGLYDVLTKYWNRYHLYMYVTENGIADDADYQRPY YLVSHVYQVHRAINSGADVRGYLHWSLADNYEWASGFSMRFGLLKVDYNT	UniRef90:	204,806,910
KRLYWRPSALVYREIATNGAITDEIEHLNSVPPVKPLRH	Swiss-Prot:	572,970
	Protein Data Bank:	234,440
	Protein:	229,682
	Nucleic Acids:	20,451

Protein folding


Protein folding is the process by which a protein assumes its native structure from the unfolded structure

The Anfinsen's hypothesis


The sequence contains all the information to specify 3-D structure

Anfinsen showed that denatured ribonuclease A could be re-activated removing the denaturant.

Levinthal's paradox

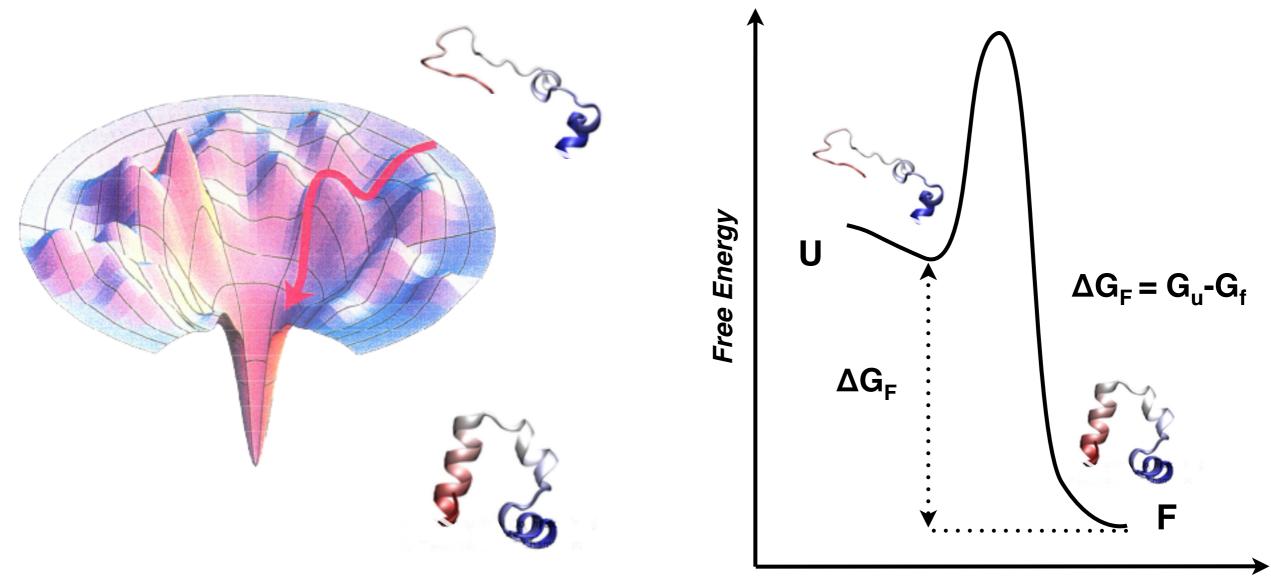
A protein chain composed by 100 residues with 2 possible conformations has 2^{100} (~10³⁰) possible conformations. Considering a time-step of 10^{-12} s for visiting each conformation, the folding process would take 10^{18} s, that is longer than the age of our Universe (2-3 x 10^{17} s)

The Anfinsen's Dogma

Uniqueness: requires that the sequence does not have any other configuration with a comparable free energy.

Stability: small changes in the surrounding environment not affect the structure of the stable conformation. This can be pictured as a free energy surface that looks more like a funnel and the free energy surface around the native state must be rather steep and high, in order to provide stability.

Kinetical accessibility: means that the path in the free energy surface from the unfolded to the folded state must be reasonably smooth or, in other words, that the folding of the chain must not involve highly complex changes in the shape.

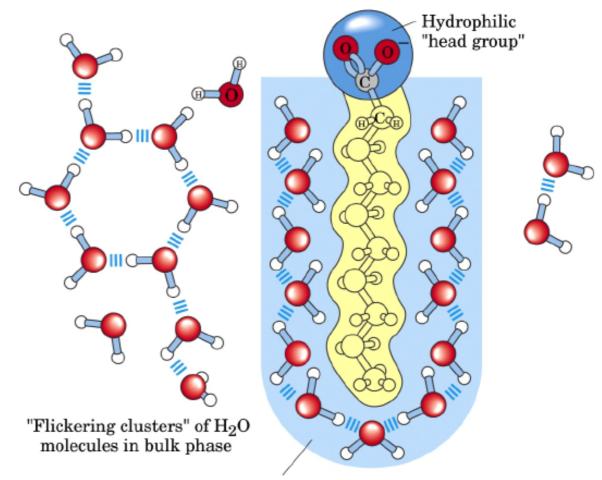

Aspects of the same problem

The solution of the protein folding consists in the understanding of three different aspects of the problem:

- Estimate the stability of the native conformation and thermodynamic of the process.
- Define the mechanism and the kinetic of the process.
- Predict the native three-dimensional structure of the protein.

Folding and stability

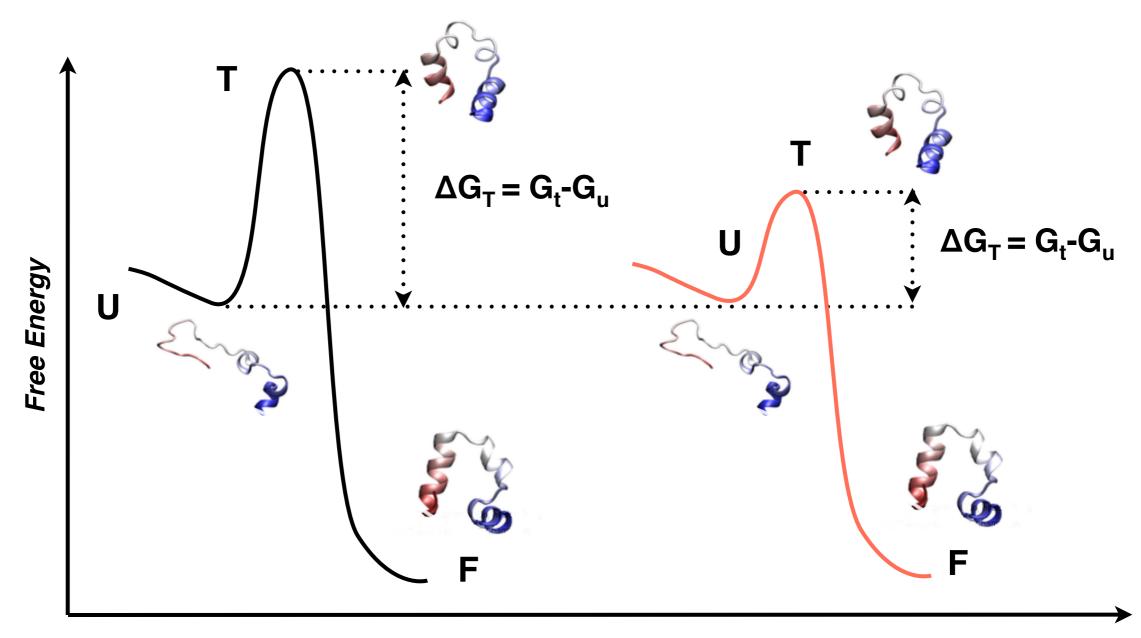
The folding free energy difference, ΔG_F , is typically small, of the order of -5 to -15 kcal/ mol for a globular protein (compared to e.g. -30 to -100 kcal/mol for a covalent bond).


Folding interactions

Several electrostatic interactions are contributing to the stability of the native state but they are not the driving forces in the folding process

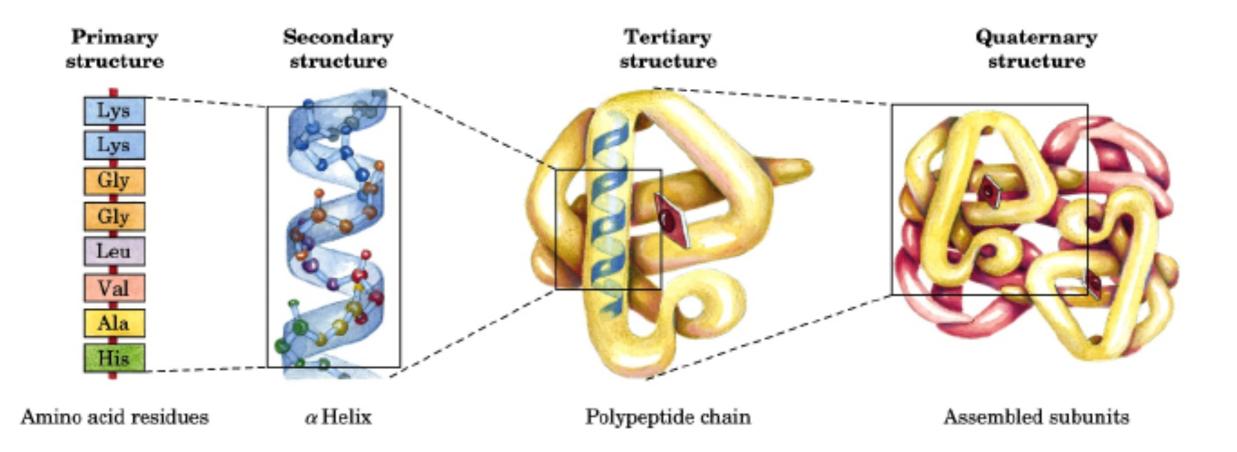
Туре	Exa	amples	Binding energy (kcal/mol)	Change of free energy water to ethanol (kcal/mol)
Electrostatic interaction	Salt bridge	—COO ⁻ N ⁺ H ₃ —	-5	-1
meraction	Dipole-dipole	$\dot{C}=O O=C$	+0.3	
Hydrogen bond	Water	н, н О–н о́н	-4	
c c n c	Protein backbone	N-HO=C	-3	
Dispersion forces	Aliphatic hydrogen	—С–нн–С–	-0.03	
Hydrophobic forces	Side chain of Phe			-2.4

Hydrophobic effect

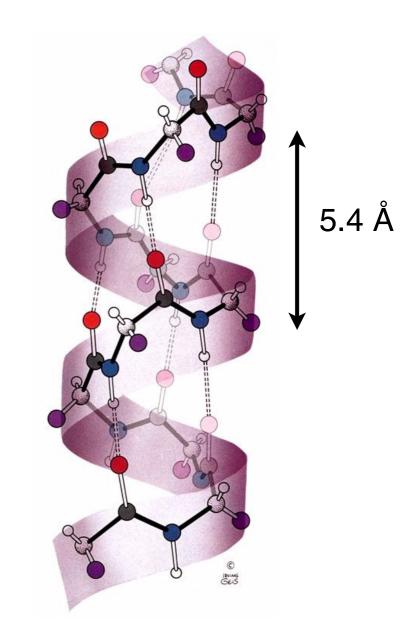

- Water molecules form a cage-like structure around the nonpolar molecule.
- The positive ΔH is due to the fact that the cage has to be broken to transfer the nonpolar molecule.
- The positive ΔS is due to the fact that the water molecules are less ordered (an increase in the degree of disorder) when the cage is broken.

Highly ordered H_2O molecules form "cages" around the hydrophobic alkyl chains

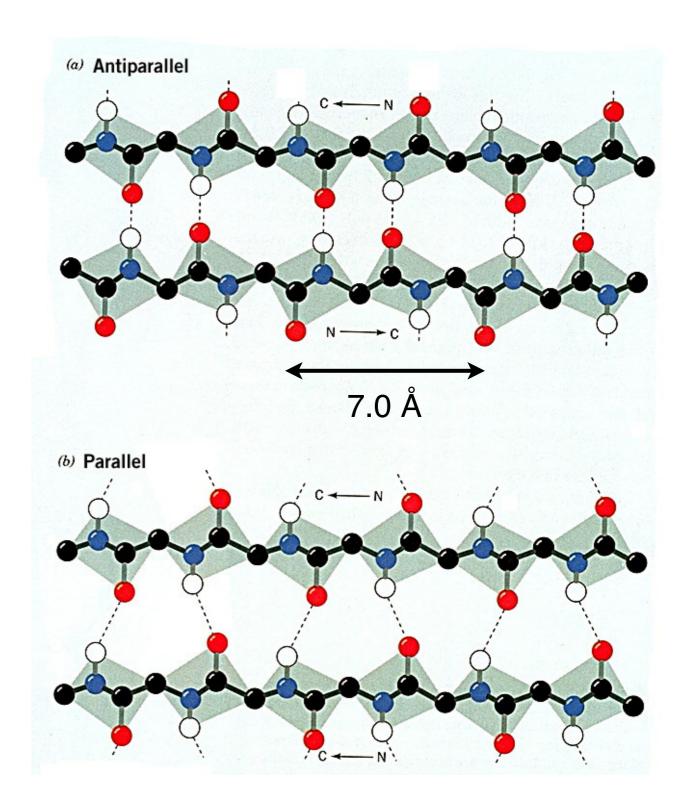
Folding kinetics


The protein folding mechanism depends on the form of the free energy profile. Higher activation barrier corresponds to longer folding time

Reaction Coordinate

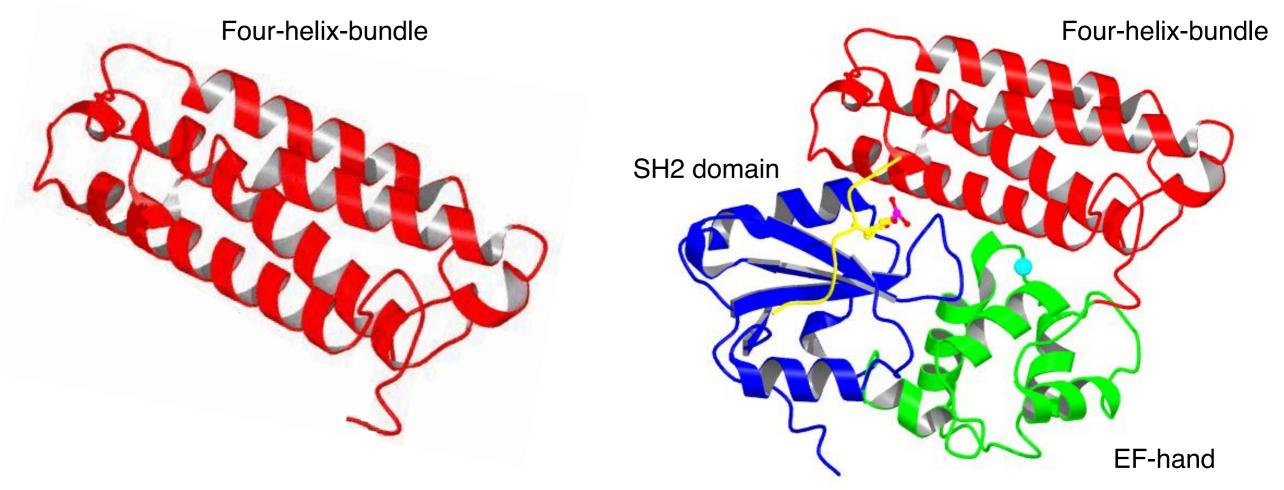

Hierarchical organization of protein structure

Protein structure is defined by four levels of hierarchical organization.


Secondary structure (I)

- Helices observed in proteins are mostly right-handed.
- Typical φ, ψ values for residues in α-helix are around -60°; -50°
- Side chains project backward and outward.
- The core of α-helix is tightly packed.

Secondary structure (II)


- Typical φ, ψ values for residues in β-sheet are around 140°, -130°
- Side chains of neighboring residues project in opposite directions.
- The polypeptide is in a more extended conformation.
- Parallel β-sheets are less stable than anti-parallel β-sheets.

More complex structures

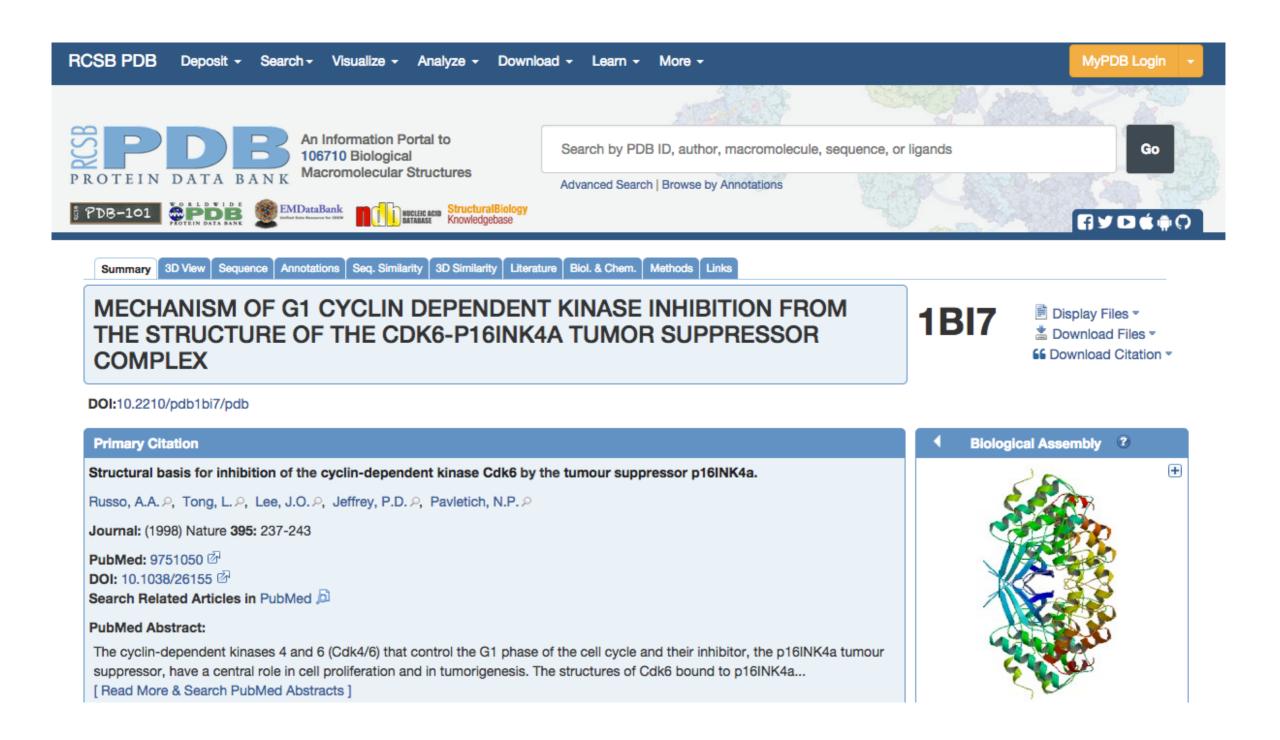
The arrangements of secondary structural elements form the Tertiary Structure of the protein.

The complex of two or more protein domains defines the Quaternary Structure. In the example Four-helix-bundle, EF-hand and SH2 domains together form an integrated phosphoprotein that functions as a negative regulator of many signaling pathways from receptors at the cell surface.

CDK inhibitor 2A

The cyclin-dependent kinase inhibitor 2A is a negative regulator of cell proliferation.

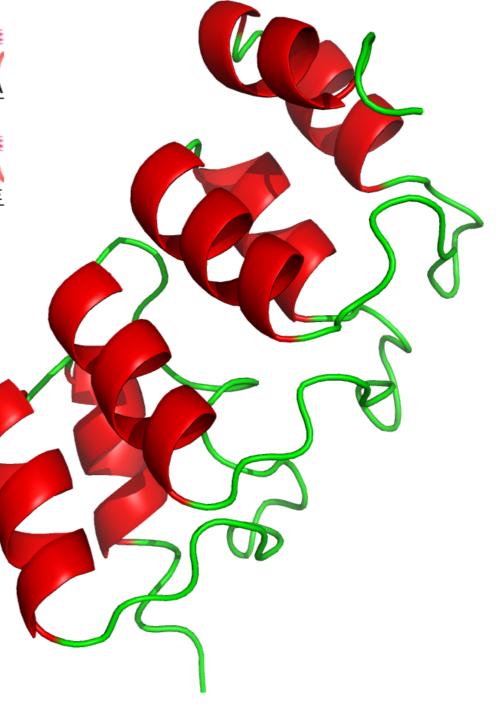
UniProt	UniProtKB - Q Search
BLAST Align Retrieve/II	O mapping Peptide search Help Contact
UniProtKB -	P42771 (CDN2A_HUMAN)
Display	Selast E Align Format Add to basket History
Entry Publications Feature viewer	Protein Cyclin-dependent kinase inhibitor 2A Gene CDKN2A Organism Homo sapiens (Human)
Feature table	Status Reviewed - Annotation score: . Experimental evidence at protein level ¹
 Function Names & Taxonomy Subcellular location 	Function ⁱ Acts as a negative regulator of the proliferation of normal cells by interacting strongly with CDK4 and CDK6. This inhibits their ability to interact with cyclins D and to phosphorylate the retinoblastoma protein. • 2 Publications •
 Pathology & Biotech PTM / Processing Expression 	 GO - Molecular functionⁱ cyclin-dependent protein serine/threonine kinase inhibitor activity ♥ Source: BHF-UCL ▼ NF-kappaB binding ♥ Source: BHF-UCL ▼ protein kinase binding ♥ Source: BHF-UCL ▼
InteractionStructure	 RNA binding Source: UniProtKB - Complete GO annotation
 Family & Domains Sequences (6) Cross-references 	 GO - Biological processⁱ cell cycle arrest ♥ Source: BHF-UCL ♥ cellular senescence ♥ Source: BHF-UCL ♥ G1/S transition of mitotic cell cycle ♥ Source: BHF-UCL ♥
Entry information	 negative regulation of cell-matrix adhesion Source: BHF-UCL - negative regulation of cell-matrix adhesion Source: BHF-UCL -


CDK inhibitor 2A

Mutation of the CDKN2A have been associated to different forms of melanomas

Pathology & Biotech Display Involvement in disease¹ Entry The association between cutaneous and uveal melanomas in some families suggests that mutations in CDKN2A may account for a proportion of uveal Publications melanomas. However, CDKN2A mutations are rarely found in uveal melanoma patients. Feature viewer Melanoma, cutaneous malignant 2 (CMM2) 4 12 Publications -Feature table Disease susceptibility is associated with variations affecting the gene represented in this entry. Disease description: A malignant neoplasm of melanocytes, arising de novo or from a pre-existing benign nevus, which occurs most often in the skin None but also may involve other sites. Function See also OMIM:155601 Names & Taxonomy Position(s) Description Actions Graphical view Feature key Length 19 A \rightarrow ATA in CMM2; loss of CDK4 binding. Natural variant¹ (VAR_058549) 1 Subcellular location Natural variant¹ (VAR 001413) 24 R \rightarrow C in CMM2. 1 Pathology & Biotech Natural variant¹ (VAR_001414) 24 $R \rightarrow P$ in CMM2. \P 1 Publication \neg Corresponds to variant 1 PTM / Processing dbSNP:rs104894097 Ensembl, ClinVar. Natural variant¹ (VAR 001416) 32 L \rightarrow P in CMM2. \checkmark 1 Publication \checkmark 1 Expression 35 G \rightarrow A in CMM2; also found in a biliary tract tumor and a patient Natural variant¹ (VAR_001418) 1 with uveal melanoma; partial loss of CDK4 binding. Interaction I Publication - Corresponds to variant dbSNP:rs746834149 Ensembl, ClinVar. Structure Natural variant¹ (VAR_001419) 35 G \rightarrow E in CMM2. \bigcirc 1 Publication \rightarrow Corresponds to variant 1 Family & Domains dbSNP:rs746834149 Ensembl, ClinVar. 35 G \rightarrow V in CMM2; loss of CDK4 binding. \checkmark 1 Publication \checkmark Natural variant¹ (VAR_058551) 1 Sequences (6) Natural variantⁱ (VAR_001420) 48 P \rightarrow L in CMM2; also found in head and neck tumor; somatic 1 mutation. 4 1 Publication -Cross-references Natural variantⁱ (VAR_001423) 50 Q \rightarrow R in CMM2. \checkmark 1 Publication \checkmark 1 Entry information Natural variantⁱ (VAR_001424) 53 M \rightarrow I in CMM2. \checkmark 3 Publications \checkmark Corresponds to variant 1 dbSNP:rs104894095 Ensembl, ClinVar. Miscellaneous Natural variant¹ (VAR_001427) 59 V \rightarrow G in CMM2. \checkmark 1 Publication \rightarrow Corresponds to variant 1 Similar proteins dbSNP:rs104894099 Ensembl, ClinVar. Natural variant¹ (VAR 001430) 62 L \rightarrow P in CMM2. 1 ▲Top

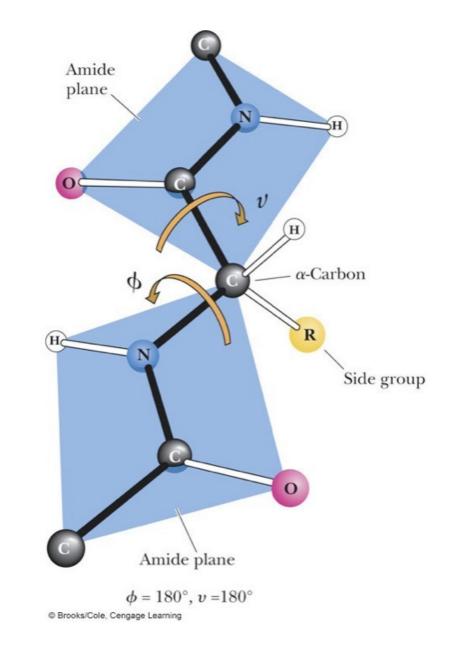
CDK6-P16INK4A


Mechanism of CDK6 inhibition from the complex with tumor suppressor P16INK4A.

P16INK4A

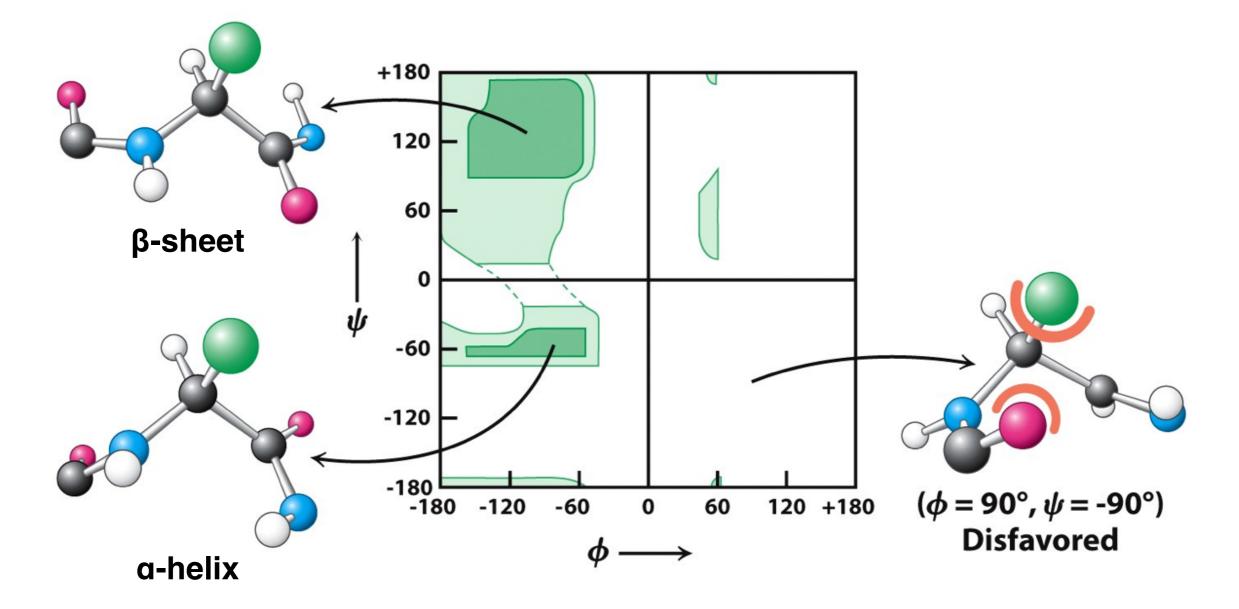
The P16INK4A is a tumor suppressor protein with 7 helixes.

PDB data


The most important information are the atomic coordinates.

		AT	RES	СН	POS	X	Y	Z		
ATOM	2145	N	GLU	В	10	150.341	72.309	103.145	1.00	99.90
ATOM	2146	CA	GLU	В	10	150.096	71.519	101.907	1.00	99.90
ATOM	2147	С	GLU	В	10	150.425	70.046	102.190	1.00	99.90
ATOM	2148	0	GLU	В	10	151.326	69.770	102.983	1.00	99.90
ATOM	2149	СВ	GLU	В	10	150.963	72.057	100.790	1.00	99.90
ATOM	2150	N	PRO	В	11	149.661	69.092	101.595	1.00	99.90
ATOM	2151	CA	PRO	В	11	149.856	67.644	101.778	1.00	99.90
ATOM	2152	С	PRO	В	11	150.783	66.845	100.844	1.00	99.90
ATOM	2153	0	PRO	В	11	151.938	66.593	101.185	1.00	99.90
ATOM	2154	CB	PRO	В	11	148.425	67.108	101.722	1.00	99.90
ATOM	2155	CG	PRO	В	11	147.816	67.948	100.672	1.00	99.90
ATOM	2156	CD	PRO	В	11	148.333	69.350	101.000	1.00	99.90
ATOM	2157	N	SER	В	12	150.258	66.422	99.691	1.00	99.90
ATOM	2158	CA	SER	В	12	150.965	65.585	98.710	1.00	99.90
ATOM	2159	С	SER	В	12	150.922	64.167	99.292	1.00	99.90
ATOM	2160	0	SER	В	12	150.493	63.222	98.632	1.00	99.90
ATOM	2161	СВ	SER	В	12	152.410	66.042	98.440	1.00	99.90
ATOM	2162	OG	SER	В	12	152.907	65.499	97.219	1.00	99.90

Defining protein structure


Basic information for the characterization of the protein three-dimensional structures are:

- ϕ , ψ values for each residue in the protein chain
- secondary structure
- solvent accessible area

Ramachandran Plot

The backbone of the protein structure can be defined providing the list of ϕ , ψ angles for each residue in the chain.

Berg JM et al. (2012). Biochemistry VII Ed.

DSSP program

Program that implements the algorithm "Define Secondary Structure of Proteins".

The method calculates different features of the protein structure such as the ϕ , ψ angles for each residue, its secondary structure and the solvent accessible area.

#	R	ESIDU	JE	AA	SI	RU	CTURE	BP1	BP2	ACC	• • •	PHI	PSI	X-CA	Y-CA	Z-CA
	1	10	В	E		1		0	0	153	• • •	360.0	144.2	150.1	71.5	101.9
	2	11	В	Р			+	0	0	83	• • •	-90.2	-84.0	149.9	67.6	101.8
	3	12	В	S	S	>>	S+	0	0	60	• • •	77.6	-51.1	151.0	65.6	98.7
	4	13	В	А	т	34	S+	0	0	6	• • •	-82.3	73.7	151.3	62.7	101.2
	5	14	В	D	т	3>	S+	0	0	39	• • •	-154.6	-41.3	147.5	62.2	100.9
	6	15	В	W	Η	<>	S+	0	0	170	• • •	-60.8	-41.6	148.0	61.1	97.3
	7	16	В	L	Η	Х	S+	0	0	0	• • •	-62.9	-38.5	150.2	58.6	98.9
	8	17	В	А	Η	>	S+	0	0	3	• • •	-62.0	-58.1	147.4	57.5	101.3
	9	18	В	т	Η	X	S+	0	0	72	• • •	-56.4	-34.0	144.9	56.8	98.6
					SS					SAA		PHI	PSI			

DSSP: more details at wikipedia

Kabsch W, and Sander C, (1983). Biopolymers. 22 2577-2637.

Problem 1a

Write a program that parse the DSSP file and for each residue extract:

- the secondary structure (col: 17)
- the solvent accessible area (cols: 36-38)
- phi and psi angles (cols: 104-109 and 110-115)

The program groups the different types of secondary structure in the there main ones (Helix, Beta and Coil) and calculate the relative solvent accessible area.

<pre>Norm_Acc={"A"</pre>	:106.0,	"B"	:160.0,		
"C"	:135.0,	"D"	:163.0,	"E"	:194.0,
"F"	:197.0,	"G"	: 84.0,	"H"	:184.0,
"I"	:169.0,	"K"	:205.0,	"L"	:164.0,
"M"	:188.0,	"N"	:157.0,	"P"	:136.0,
"Q"	:198.0,	"R"	:248.0,	"S"	:130.0,
"T"	:142.0,	"V"	:142.0,	"W"	:227.0,
"X"	:180.0,	"Y"	:222.0,	" Z "	:196.0}

Problem 1b

Write a script that takes in input a list of mutated sites and a DSSP file and chain, and returns for each mutation the secondary structure and the relative solvent accessible area.

How many mutated sites occurs in buried regions (relative solvent accessible area<20%)?

Run the script on the DSSPs obtained from the whole PDB and only from chain B to find possible mutation at the interface.