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STRUCTURE COMPARISON
AND ALIGNMENT

Marc A. Marti-Renom, Emidio Capriotti,
Ilya N. Shindyalov, and Philip E. Bourne

INTRODUCTION

Since the 1970s, after the seminal work of Rossmann and Argos (1978) comparing binding

sites of known enzyme structures, the comparison and alignment of protein structures has

come to be a fundamental and widely used task in computational structure biology. Three

main steps are needed for comparing two protein structures: first, the detection of their

common similarities; second, the alignment of the structures based on such similarities;

and third, a statistical measure of the similarity. Considering the first two steps, structure

comparison refers to the analysis of the similarities and differences between two or more

structures, and structure alignment refers to establishing which amino acid residues

are equivalent between them. The majority of commonly used methods do a reasonably

good job in recognizing obvious similarities between protein structures. However, the

alignment of two or more structures is a more difficult task, and its accuracy may depend on

the method or program used as well as what the user is trying to accomplish, which will be

discussed subsequently. All programs that are briefly described in this chapter perform both

steps and are commonly known as protein structure alignment methods.

It is also important to immediately clear up any confusion between structure alignment

and structure superposition since such terms are often interchanged in the literature. As

mentioned above, structure alignment tries to identify the equivalences between pairs of

amino acid residues from the structures to superpose, while structure superposition requires

the previous knowledge of such equivalences. Thus, structure superposition tries to solve

the simpler geometrical task of minimizing the distance between already known equivalent

residues of the superimposed structures by finding a transformation that produces either

the lowest root-mean-square deviation (RMSD) or the maximal equivalences within an
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RMSD cutoff. Structure superposition methods have been around for some time (Dia-

mond, 1976; Kabsch, 1976; Hendrickson, 1979; Kearsley, 1989). However, structure

comparison and alignment methods, recently reviewed (Carugo, 2007; Mayr, Domingues,

and Lackner, 2007), were developed later (Usha andMurthy, 1986; Sali and Blundell, 1990;

Boberg, Salakoski, and Vihinen, 1992; Kikuchi, 1992; Shapiro et al., 1992; Holm and

Sander, 1993b; Johnson, Overington, and Blundell, 1993; Orengo et al., 1993; Overington

et al., 1993; Holm and Sander, 1994a; Lessel and Schomburg, 1994).

We begin this chapter by introducing the use of protein structure comparison and

alignment for characterizing a fundamental principle in biology. Then we describe the

general approach to structure comparison by outlining some of the most widely used

methods. Next, we introduce two particular scenarios involving protein structure compari-

son, multiple structure alignment and flexible structure alignment. Finally, the large-scale

application of methods for protein structure comparison and their impact on characterizing

structure space is introduced in the context of structure genomics. As a quick guide, a list of

common Internet resources for protein structure comparison and alignment is provided in

Table 16.1.

Impact of Protein Structure Comparison and Alignment

Similarly to sequence-based alignment methods, structure-based alignment methods

have been widely used for characterizing biological processes. In fact, this book includes

a broad overview of several approaches that rely on protein structure comparison and

alignment:

. Chapters 17 and 18 introduce twowidely accepted structure classification systems,

the SCOP (Andreeva et al., 2004) and CATH (Greene et al., 2007) databases. Both

efforts result in a hierarchical classification of the known structure space of protein

domains.

. Chapter 21 focuses onmethods for inferring protein function from structure (Godzik,

Jambon, and Friedberg, 2007). In such approaches, structure alignments usually play

an important role. Functional inference is relevant to structure genomics, which

results in a rapid increase in the number of experimentally determined protein

structures of unknown function (Chapter 40).

. Chapters 30 to 32 introduce protein structure prediction andmodel evaluation, which

rely heavily on structure alignment methods for classifying the structure space,

assessing the likely accuracy of a model, and/or evaluating its actual accuracy.

Chothia and Lesk (1986) first observed,when the number of structures was limited, that

protein structurewasmore conserved than protein sequence. As such, protein structures can

provide protein sequence alignments of an accuracy that would not be achievable from

sequence alignments alone. This ability is becoming a major contribution to the field of

structural bioinformatics and is best illustrated in the consideration of evolution studied

through protein structure (Chapters 17, 18, and 23).

On the Relationship Between Sequence and Structure

Since evolution conserves protein structure more than protein sequence, it follows that the

number of possible structure folds is less than the number of sequence families. Howmuch is
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implied by ‘‘less than’’ is remarkable. There are a total of 20300 possible sequences of 300

residues, which is more than the number of atoms in the universe. However, evolution has

selected a very small subset of those protein sequences (less than 30,000 in human) and an

even smaller number of protein folds (1000–5000) (Reeves et al., 2006) (Chapter 2). As

stated above, such a reduction from sequence space to structure spacewas first quantified by

Chothia and Lesk in the 1980s (Lesk and Chothia, 1980; Lesk and Chothia, 1982; Chothia

and Lesk, 1986; Chothia and Lesk, 1987), later confirmed by Sander and Schneider (1991),

and recently updated by Rost (1999). To illustrate this relationship here, we have taken a set

T A B L E 1 6 . 1 . Popular Internet Resources for Structure Comparison and
Alignment

Name Ta Reference Root URL

CATH D Greene et al. (2007) http://www.cathdb.info

CE P Shindyalov and

Bourne (1998)

http://www.sdsc.edu

CE-MC S Guda et al. (2004) http://bioinformatics.albany.edu

DALI D Holm and Sander (1996) http://www.ebi.ac.uk

DBAli D Marti-Renom et al. (2007) http://www.dbali.org

FATCAT S Ye and Godzik (2004) http://fatcat.burnham.org

EXPRESSO S Armougom et al. (2006) http://www.tcoffee.org

GANGSTA S Kolbeck et al. (2006) http://gangsta.chemie.fu-berlin.de

KENOBI/K2 S Szustakowski and

Weng (2000)

http://zlab.bu.edu

MAMMOTH S Ortiz, Strauss and Olmea

(2002)

http://ub.cbm.uam.es

MAMMOTH-Mult S Lupyan, Leo-Macias, and

Ortiz (2005)

http://ub.cbm.uam.es

MultiProt S Shatsky, Nussinov, and

Wolfson (2004)

http://bioinfo3d.cs.tau.ac.il

MUSTANG S Konagurthu et al. (2006) http://www.cs.mu.oz.au

LGA S Zemla (2003) http://as2ts.llnl.gov

lovoAlign S Martinez, Andreani, and

Martinez (2007)

http://www.ime.unicamp.br

SARF2 S Alexandrov (1996) http://123d.ncifcrf.gov

SCOP D Andreeva et al. (2004) http://scop.mrc-lmb.cam.ac.uk/scop

SSAP S Orengo and Taylor (1996) http://www.cathdb.info

STAMP S Russell, Copley, and Barton

(1996)

http://www.compbio.dundee.ac.uk

POSA S Ye and Godzik (2005) http://fatcat.burnham.org

ProFit S Not published http://www.bioinf.org.uk

SALIGN P Not published, MODELLER

manual

http://www.salilab.org

TM-Align S Zhang and Skolnick (2005b) http://zhang.bioinformatics.ku.edu

TOPOFIT S Ilyin, Abyzov, and Leslin

(2004)

http://mozart.bio.neu.edu

VAST S Madej, Gibrat, and

Bryant (1995)

http://www.ncbi.nlm.nih.gov/

Structure/VAST/

a Type: Program (P); Server (S); Database (D).

INTRODUCTION 399



of 1000 randomly selected chains from 11,900 nonredundant chains in DBAli (Marti-

Renom, Ilyin, and Sali, 2001;Marti-Renom et al., 2007) to generate the plots in Figure 16.1.

The data for the plots were obtained from 154,777 pair-wise alignments stored in DBAli,

using as a query each of the 1000 selected chains that were aligned byMAMMOTH (Ortiz,

Strauss, and Olmea, 2002) against all �87,000 chains in the Protein Data Bank (PDB)

(Berman et al., 2000).Only pair-wise alignments that aligned at least 75%of theCa atoms of

a query structure are plotted.As already observedbyRost (1997), a substantial number of the

similar pairs of structures have sequence identities near thevalues of randomly selected pairs

of sequences (�10%).Moreover, Rost assessed that the symmetric shape of the distribution

at low sequence identity (<40%) indicates that most sequences are in evolutionary

equilibrium making it very difficult to differentiate between convergent and divergent

evolution for those sequences. These sequence–structure relationships include the so-called

midnight zone (i.e., 0–20% sequence identity) and the so-called twilight zone (i.e., 20–40%

sequence identity). The homology between two sequences in the midnight zone is very

difficult to determine from sequence methods, and similarity can only be detected

using structure alignment methods. Homology can be detected using sequence and/or

structure alignment methods in the well-populated twilight zone. In summary, for a large

number of evolutionarily related proteins, structure alignments providevaluable insights not

achievable from sequence alone.

As discussed elsewhere in this book, it is dangerous to consider these findings as

absolute—they most certainly are not. The relationship between primary protein sequence,

structure, and biological function is complex and still partially uncharacterized. As George

Bernard Shawonce said, ‘‘the golden rule is that there are no golden rules.’’ Such a statement

clearly applies towhat we know from comparing protein sequence and structure spaces. For

example, there are cases of structures containing regions of high sequence similarity, and yet

Figure 16.1. Structure similarity versus sequence similarity. Plotted data was obtained from

159,777 pair-wise structural alignments byMAMMOTH comparing 1000 randomly selected protein

chains against the complete structural spacedeposited in thePDBas ofMarch2007(�87,000 chains).

The 1,000 chains set was obtained from a nonredundant set of structures where alignments

between any two chains in the list fails at least one of the following four cutoffs: a minimum of

20% sequence identity, a minimum of 75% of Ca atoms aligned within 4A
�
, a maximum of 3A

�
Ca

RMSD, and amaximumof 50 residues difference in length. Sequence identity is plotted against the

number of superposed residues (left). The frequency distribution plotted against sequence identity

with the 159,777 pair-wise structural alignments are shown on the right.
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sharing no or little structure similarity. Consider that the viral capsid protein (1PIV:1) shares

an 80-residue stretch with glycosyltransferase (1HMP:A) where there is >40% sequence

identity, yet the structureswithin those regions are completely different (i.e.,mostlyb versus
mostly a, respectively). In short, structure alignment methods and their results, although

only a guideline, have been essential for characterizing the relationship between sequence

and structure and its implications in protein evolution.

GENERAL APPROACH TO STRUCTURE COMPARISON AND ALIGNMENT

Structure comparison and alignment is an NP-hard problem, which is only computationally

tractable by using heuristics. As a result, the variety of solutions for aligning two protein

structures reflect the differences in the heuristics used by eachmethod.Moreover, even if the

NP-hard problem were computationally tractable, it is very likely that for pairs of distantly

related protein structures, the final alignment would not reveal new biological insights. In

fact, for such protein pairs, different structure comparisonmethodsmay produce alignments

that differ in every position (Godzik, 1996). Thus, it is important to experiment with a

different algorithms and to assess the strengths and weaknesses of each method when the

quality of the alignment is important to your research. There is a significant body of literature

on protein structure comparison and alignment methods to help you in this regard. The

reviews listed here are not exhaustive but do provide a historical perspective of the field. In

1994, Orengo comprehensively reviewed a series of methods used in protein structure

domain classification (Orengo, 1994). Later on, Gibrat and coworkers reviewed the first

structure comparisonmethods that were fast enough to be effectively used on large numbers

of protein structures (Gibrat, Madej, and Bryant, 1996). Lemmen and Lengauer (2000)

reviewed the more general field of molecular superposition within drug discovery. The

authors provided a perspective on how superposition methods may effectively be used for

database screening. In 2001,Koehl highlighted that although protein structuremethodswere

mature enough to be applied in large-scale experiments, it was clear that a reliable scorewas

still needed for assessing the significance of remote structure similarities (Koehl, 2001).

Finally, a recent review by Carugo (2007) outlined most of the available methods for pair-

wise, multiple, and flexible structure alignment.

In the next section, we outline a few of the most widely used methods for protein

structure alignment.However, it is beyond the scope of this chapter to deal with eachmethod

in detail, nor to compare them. The intent is to give the reader a sense of the similarities and

differences between such approaches. We refer the reader to the original papers for a full

description of the methods and the resulting web resources listed in Table 16.1. All methods

need to address three problems:

1. Representation: How to represent the input structures in a coordinate-independent

space suitable for alignment.

2. Optimization: How to sample the space of possible alignment solutions between the

structures.

3. Scoring: How to score a given alignment and determine its statistical significance.

We discuss seven widely used and cited protein structure alignment methods:

DALI (Holm and Sander, 1993b), SSAP (Orengo and Taylor, 1996), VAST (Madej, Gibrat,

and Bryant, 1995; Gibrat, Madej, and Bryant, 1996), SARF2 (Alexandrov, 1996),
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CE (Shindyalov and Bourne, 1998), MAMMOTH (Ortiz, Strauss, and Olmea, 2002), and

SALIGN (Sali and Blundell, 1990) with regard to how they address the three problems of

structure alignment. A broader list of available methods can be found in Table 16.1.

Briefly, the DALI algorithm, which is used in the FSSP database (Holm and

Sander, 1994b), aligns two structures by generating a comparison matrix of intramolecular

distances and optimizes that matrix using a Monte Carlo procedure. The SSAP algorithm,

which is used in the CATH database (Greene et al., 2007), is a method for automatically

comparing 3D structures using a double dynamic programming optimizer. The VAST

algorithm, which is part of the NCBI’s structure computational services, is a fast similarity

search method based on a vector representation of protein structures. The SARF2

algorithm, designed as a similarity search method, compares the spatial arrangements of

secondary structure elements computed from the coordinates of proteins. TheCE algorithm,

also implemented in a multiple structure alignment method CE–MC (Guda, Pal, and

Shindyalov, 2006), uses a combinatorial extension (CE) method to extend highly similar

pairs of residues, optimizing the best path using dynamic programming (CE) and Monte

Carlo optimization (CE–MC). TheMAMMOTH algorithm, also implemented in a multiple

structure alignmentmethodMAMMOTH-Mult (Lupyan, Leo-Macias, andOrtiz, 2005) and

used in the DBAli database (Marti-Renom, Ilyin, and Sali, 2001;Marti-Renom et al., 2007),

is a fastmethod for aligning two structures based onavector representationof intramolecular

distances compared by a dynamic programming optimizer. Finally, the SALIGN command

of the MODELLER package (Sali and Blundell, 1993), which is also used in the DBAli

database, compares structure properties calculated from the 3D coordinates of two or more

proteins that are then aligned by a dynamic programming optimizer.

We now look at each of these methods in more detail according to the three issues

associated with comparison.

Protein Structure Representation

DALI uses a distance matrix to represent each structure (Phillips, 1970). Thus, proteins are

effectively transformed into 2D arrays of distances between all their Ca atoms. This has the

advantage of placing all structures in a simplified common frameof reference. Conceptually,

the problem is then straightforward, as if one is imagining each structure’s contact map

transparently overlaid. Overlap along the diagonal then represents similar backbone

conformations (secondary structure) and off-diagonal similarity in tertiary structure.

Moving one sheet of paper horizontally or vertically relative to the other to achieve overlap

represents gap insertion into one or other of the structures. A later version of DALI

introduced an initial quick lookup of common secondary structure elements (SSEs) between

the two proteins.

SSAP (Sequence Structure Alignment Program) uses the Cb atoms to generate a set of

vectors connecting residues (in the case of glycine, a dummy Cb is used). Such vectors

effectively represent the structure in two dimensions providing both position and

directionality.

VAST (Vector Alignment Search Tool), as the name suggests, represents structures as a

set of vectors. In this case, the vectors are calculated from the secondary structure elements

whose type, directionality, and connectivity infer the structure topology of the protein.

SARF2 transforms the coordinate representation in a set of SSEs using the Ca atom of

each residue to calculate the deviation of a-helices and b-sheets from typical SSEs

conformations.
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CE (Combinatorial Extension) represents proteins as a set of Ca distances for

octamers (i.e., between eight consecutive residues in the structure). Each pair of octameric

fragments that can be alignedwithin a given threshold is considered an aligned fragment pair

(AFP).

MAMMOTH (MAtching Molecular Models Obtained from THeory) transforms the

original coordinates of the protein structure into a set of six unit-vectors calculated from the

Ca trace of consecutive heptamers (Chew et al., 1999).

SALIGN represents proteins by a set of properties or features either calculated from their

sequences and structures or arbitrarily defined by the user. Such properties are sequence

residue type, interresidue distance, fractional side-chain accessibility, secondary structure,

local structure conformation, and a user-specified feature.

COMPARISON ALGORITHM AND OPTIMIZATION

DALI creates a set of submatrices of fixed size by collapsing the original distance matrices

into regions of overlap. Submatrices are then joined if there is an overlap between adjacent

fragments. The optimal superposition of the final matrices is then obtained using the branch

and bound algorithm (Holm and Sander, 1996).

SSAP searches for the optimal structure alignment by using a double dynamic

programming algorithm. First, a set of selected matching positions is defined by applying

a dynamic programming algorithm to the matrix of differences between Cb vectors of

positions i and k (i is the residue index in the first protein and, k is the residue index in

the second protein) and all other positions in their respective proteins. Second, the final

Sik matrix is obtained by comparing vectors between Cb atoms at pairs of positions i and j

of the same protein to the Cb atoms from the selected matching positions. The final

alignment is then computed over thematrix of scores Sik by a second dynamic programming

step.

VAST uses a Gibbs sampling algorithm from seed SSE pairs to find alternative

alignments of SSEs and scoring them by comparing the matches with randomly generated

sets of SSE pairs. The final alignment is further refined using a Monte Carlo optimization

procedure.

SARF2 evaluates pairs of similar SSEs between two structures by comparing the angle

between them, the shortest distance between their axes, the closest point on the axes, and the

minimum andmaximumdistances from each SSE to theirmedium line. SARF2 implements

a graph-based optimizer used to solve themaximumclique problem for searching the largest

ensembles of themutually compatible pairs of SSEs. Finally, an extension and refinement of

the alignment is computedbyadding additional residues to the alignment until a user-defined

RMSD threshold is reached.

CE uses a combinatorial extension algorithm to identify and combine the most similar

AFPs between the compared structures. Three similarity thresholds guide the heuristic

procedure for finding the optimal alignment between two proteins. First, a threshold is used

to define a set of AFPs between the two structures and to select the AFP that will seed the

structure alignment. Second, an iterative process is used to identify newAFPs to be added to

the seed alignment (i.e., with a single AFP in the first iteration). The alignment will be then

extended if the addition of a new AFP maintains the alignment score within the second

threshold. Finally, a third threshold will be used to identify the best possible alignments

within a set of solutions. To speed up the process, new extensions of the alignment will be
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performed onlywithAFPswithin 30 residues distance to the current alignment ends. Further

optimization is performed on selected alignments by using a dynamic programming

algorithm over an interprotein distance matrix.

MAMMOTH obtains a similarity matrix between any two heptamers by calculating

a URMS (unit-vector root mean square) through optimally superposing their unit-vectors.

Then, a dynamic programming algorithm computes the optimal path over the similarity

matrix. Finally, a variant of the heuristic implemented inMaxSub (Siew et al., 2000) is used

to identify the largest local structure alignment within a given RMSD threshold.

SALIGN computes a dissimilarity matrix between equivalent properties from two or

more structures. The dissimilarity score is computed by comparing aweighted sumof the six

properties representing the proteins. Then, the final alignmentwill be obtainedbyfinding the

optimal path in the matrix by a local or global dynamic programming algorithm using either

an affine gap penalty or an environment-dependent gap penalty function.

Statistical Analysis of Results

DALI computes the statistical significance of an alignment score by using as a background

the distribution of scores from an all-against-all comparison of 225 representative structures

with less than 30% sequence identity (Hobohm et al., 1992). Such a statistic is expressed as

the number of standard deviations from the average score derived from the database

background distribution (i.e., a Z-score).

SSAP does not explicitly calculate the statistical significance of the SSAP score.

However, the scores are empirically calibrated against known structure alignments from

the CATH database. Thus, a SSAP score higher than 70 is indicative of topological

similarities between the compared structures.

VAST computes a p-value to assess the statistical significance of an alignment score.

Such a statistic is calculated in a similar manner to its sequence counterpart, BLAST

(Altschul et al., 1990). Thus, the p-value for an alignment by VAST is proportional to the

probability that its score can be obtained by randomly aligning SSE pairs. As is also true of

BLAST, the considered population of possible solutions weights the final p-value.

SARF2 final alignment score is calculated as a function of the RMSD and the number

of matched Ca atoms between the compared structures. The statistical significance of the

final score is then obtained by comparing it to the background distributing of scores from

aligning the leghemoglobin protein against a set of 426 nonredundant structures (Fischer

et al., 1995).

CE computes a Z-score for the final alignment using a set of alignments between

representative structures with less than 25% sequence identity (Hobohm et al., 1992). The

RMSD and gap score for such alignments are then used to generate normal distributions to

calculate the final Z-score of the computed alignment. This normal distribution was later

updated with a more realistic extreme value distribution (Jia et al., 2004).

MAMMOTH calculates a p-value statistic to assess the significance of a pair-wise

alignment. The p-value estimation is based on an extremevalue fitting of the scores resulting

from a set of random structure alignments (Abagyan and Batalov, 1997).

SALIGN does not explicitly calculate a statistical significance of the score from the final

alignment. Thus, the user is simply presented with the final dissimilarity score obtained by

the optimizer. However,when comparing structures, SALIGN returns a quality score,which

corresponds to the average percentage of equivalent Ca atomswithin 3.5A
�
between all pairs

of structures in the alignment.
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HOW WELL ARE WE DOING?

Most structure comparison methods will detect global structural similarity between two

proteins. However, diverse methods may identify different structure similarity for local

alignmnets. Evenwhen local or global similarity can be detected, the details of the sequence

alignment derived from structure comparison may differ. Godzik showed that different

methods for structure comparison could result in very different alignments for pairs of

proteins with low sequence identity (Godzik, 1996). Differences could be so extreme that

two methods may result in alignments different at every position. Similar conclusions were

obtained comparing several structure classification systems (Hadley and Jones, 1999) or

structurally aligning the catalytic core of several proteinkinases (Scheeff andBourne, 2006).

Given the heuristics used in protein structure alignment methods, such differences are not

surprising. Any method for protein structure alignment needs to balance coverage versus

accuracy. In otherwords, amethodmay align the core of a protein at very high accuracy (i.e.,

very lowRMSD) and very low coverage (i.e., omitting loop regions), while a secondmethod

may prefer to increase the coverage (i.e., include the loop regions in the alignment) to the

detriment of accuracy (i.e., increasing theRMSD).Howbest to address this problem? Inpart,

the answer lies in the question that youwish to address. Certainly,maximizing the biological

relevance of a result is going to be the most desirable outcome in the majority of cases. We

will comeback to this issue at the end, and for nowconsider the implications of not achieving

the optimum biological alignment.

Consider the case of comparing expert hand-generated alignments of protein kinases

against those produced by the CE algorithm (Scheeff andBourne, 2005). CEwas unable to

reproduce an optimal, manually curated alignment of 18 protein kinase structures of low

sequence similarity (<40%; available from http://www.sdsc.edu/pb/kinases). The struc-

tures showed significant diversity from the hand-curated set in loop regions as well as in

some of their secondary structure elements. A different set of parameters optimizing the

alignment of highly conserved regions of the structures might have resulted in more

biologically relevant results. In a general application, including large-scale computations,

such parameters would have to be optimized for typical families of globular proteins. This

requirement makes the production of highly accurate alignments for all protein families in

the PDB almost impossible. However, better scoring functions that incorporate structure

and functional information about a particular family may help the development of more

accurate methods.

SAMPLE RESULTS FROM STRUCTURE COMPARISON AND ALIGNMENT

Consider three examples that illustrate the importance of protein structure comparison and

alignment for characterizing and quantifying structural and functional similarities between

apparently unrelated proteins.

The first example, shown in Figure 16.2, corresponds to the alignment between a

membrane protein (colicin A; 1COL:A) and an accessory pigment to chlorophyll

(c-phycocianin; 1CPC:A). On first glance, the function of these proteins is very different.

Colicin A forms voltage-gated channels in the lipid bilayers of membranes, whereas

phycocianin is a pigment from the light harvesting phycobiliprotein family. Holm and

Sander (1993a) detected a surprising similarity between these two folds with six a-helices
sequentially aligned (Figure 16.2). Such a discovery implies that both sequences had
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undergone convergent evolution to form a stable 3-on-3 a-helical sandwich fold. Interest-

ingly, it was subsequently discovered that phycocianins can aggregate forming clusters that

then adhere to the membrane forming the so-called phycobilisomes. Such a functional

relationship may indeed point to convergent evolution from a distant common ancestor.

The second example, which is extracted from the work of one of our groups (Tsigelny

et al., 2000), illustrated how the combination and integration of different sources of

information, including structural alignments, could help to functionally characterize a

protein. In our work, two new EF-hand motifs were identified in acetylcholinesterase

(AChE) and related proteins bycombining the results fromahiddenMarkovmodel sequence

search, Prosite pattern extraction, and protein structure alignments by CE. It was also found

that thea–b hydrolase fold family, including acetylcholinesterases, contains putative Ca2þ

binding sites, indicative of an EF-hand motif, and which in some family members may be

critical for heterologous cell associations. This putative finding represented the second

characterization of an EF-hand motif within an extracellular protein, which previously

had only been found in osteonectins. Thus, structure alignment had contributed to our

understanding of an important family of proteins.

Finally, the third example, also from a previous work of one of our groups (McMahon

et al., 2005), combined information from structural alignments deposited in the DBAli

database and experiments to analyze the sequence and fold diversity of a C-type lectin

domain.Wedemonstrated that theC-type lectin fold adoptedbyamajor tropismdeterminant

sequence, a retroelement-encoded receptor binding protein, provides a highly static

structural scaffold in support of a diverse array of sequences. Immunoglobulins are known

to fulfill the same role of a scaffold supporting a large variety of sequences necessary for an

antigenic response. C-type lectins were shown to represent a different evolutionary solution

taken by retroelements to balance diversity against stability.

MULTIPLE STRUCTURE ALIGNMENT

Our discussions thus far have involved only pair-wise structure comparison and alignment,

or at best, alignment of multiple structures to a single representative in a pair-wise fashion

(i.e., progressive pair-wise structure alignment). Most of the available methods for multiple

structure alignment start by computing all pair-wise alignments between a set of structures

but then use them to generate the optimal consensus alignment between all the structures.

Figure 16.2. Structurealignment for c-phycocyanin (1CPC:A) (black)andcolicinA (1COL:A) (gray)as

computed by SALIGN. The alignment extended over 86 residues with a 0.97A
�
RMSD. The sequence

identity of the superposed residues with respect to the shorter of the two structures was 11.9%.
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A characteristic of all multiple structure alignment methods is that not all the pair-wise

alignments used in the multiple alignment may be optimal. Once computed, multiple

structure alignments, which encode weak yet definitive sequence relationships, can be used

as seed alignments for iterative searches of the nonredundant sequence databases to derive

hidden Markov models (HMMs) or profiles for use in fold, family, and superfamily

annotation.

Several methods have been developed for the alignment of multiple structures

(Table 16.1). Here, we briefly outline three different methods: CE–MC (Guda

et al., 2001; Guda et al., 2004), MAMMOTH-Mult (Lupyan, Leo-Macias, and Ortiz, 2005),

and SALIGN (Madhusudhan et al., unpublished).

CE-MC (combinatorial extension–Monte Carlo) refines a set of pair-wise structure

alignments using a Monte Carlo optimization technique. That is, the algorithm iteratively

modifies the multiple alignment, initialized with pair-wise alignments of a master structure

against all other structures, by a random set of moves, which are then accepted with a

probability proportional to the gain in the alignment score. The iterative process is stopped

when the optimal alignment, which is based on a defined distance score for each block of

aligned residues across the alignment, cannot be improved by random moves. Initially two

specific families, protein kinases and aspartic proteinases, were tested and compared against

manually curated alignments and those from the HOMSTRAD database (Stebbings and

Mizuguchi, 2004). CE–MC improved the overall number of aligned residues while

preserving key catalytic residues for those families. Using a larger benchmark of 66 protein

families, on average, an additional 12% of residues was observed to be aligned.

MAMMOTH-Mult is an extension of the MAMMOTH algorithm used for pair-wise

structure alignment.The alignment starts bygenerating all pair-wise alignments.Anaverage

linkage procedure is then used to cluster all structures based on their pair-wise structural

similarity, resulting in a dendrogram tree. MAMMOTH-Mult then generates a multiple

structure alignment by iteratively aligning, in a pair-wise fashion, the branches of the

dendrogram that are closest to each other. The authors demonstrated that the method, which

produces a typical multiple alignment every 5 s of a single CPU, produced more accurate

alignments compared to other previously existing multiple structure alignment methods

(Lupyan, Leo-Macias, and Ortiz, 2005).

SALIGN can be applied to align three or more protein structures using two different

approaches, a tree-based or a progressive alignment. Similar to MAMMOTH-Mult, during

the tree-based alignment, a dendrogram representing all pair-wise structural relationships is

calculated to guide the multiple structure alignment. SALIGN first aligns the two most

similar structures in the dendogram, which are then treated as a unit and aligned to the next

closest structure or group of structures. This iterative process is finished when SALIGN

reaches the root of the tree. Alternatively, if progressive alignment is chosen, the structures

are gradually aligned in the order they are input toMODELLER. The progressive alignment

method is computationally less intensive than using a tree-based approach.

FLEXIBLE STRUCTURE ALIGNMENT

Flexible structure alignments are becoming increasingly important given our increased

understanding of protein fold space, which moves away from the notion of discrete folds to

more of a densely populated continuum (next section). A logical outcome of the continuum

model is that protein domains are difficult to delineate and that it is better that structure be
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considered as sets of suprasecondary structures (i.e., continuous or discontinuous small

numbers ofSSEs). In thismodel, thedifferences between relatedprotein structuresmay lie in

the relative orientation of such subdomain protein fragments.

Current methods for protein structure comparison and alignment cannot address

subtle changes in the angle between those protein fragments. Ye and Godzik have

developed amethod for flexible structure alignment calledFATCAT(YeandGodzik, 2003;

Ye andGodzik, 2004) and applied it to identify structural similarities in database searches.

Briefly, the FATCAT algorithm adds a limited number of ‘‘twists’’ between AFPs (i.e.,

aligned fragment pairs between the two structures),which are treated as rigid bodies. Thus,

the final score is proportional to the alignment score for having a number of AFPs in the

alignment and the ‘‘penalty’’ of including twist to join the AFPs. In addition, FATCATwill

allow twists that result in a decrease of theRMSD.Dynamic programming is used to refine

the final alignment based on the similaritymatrix upon superposition of theAFPs resulting

from the first step. The authors demonstrated that FATCAT produced more accurate

alignmentswhenusing a test set ofmultidomain proteins. TheFATCATalgorithmhas been

applied broadly to produce the Flexible Structural Neighborhood database (Li, Ye, and

Godzik, 2006).

MAPPING PROTEIN FOLD SPACE

Ever since the first protein structures were experimentally determined, researchers have

attempted to divide and classify them. The most recent view of the protein structure space

introduced proteins as combinations of subdomain fragments, which in turn result in a

structurally dense and continuous description of the fold space (Haspel et al. 2003; Kihara

and Skolnick 2003; Tendulkar et al. 2004; Friedberg and Godzik, 2005a; Friedberg and

Godzik, 2005b; Zhang and Skolnick 2005a). It has even been suggested that these fragments

may be evolutionary linked to ancestral peptides in an RNA-based world (Lupas, Ponting,

and Russell 2001; Soding and Lupas 2003). However, the most accepted view of protein

structures divides them into domains (Chapter 20). Domains are considered evolutionary

units to the extent that they can be excised from the chain and yet continue to fold correctly

with a well-defined hydrophobic core, often still exhibiting biological activity

(Rossman, 1981; Holm and Sander, 1996). Given this view, domains can then be considered

a particular representation of recurrent and independent protein fragments that may

be observed in different folds or environments. Thus, proteins with similar folds could be

described as proteins sharing similar arrangement of protein domains or fragments

(Ye et al., 2003).

Independently of how domains (or structural units) are defined (Holland et al., 2006),

what seems clear today is that the protein fold space is quite dense and continuous.With the

exception of nonglobular proteins, such asmembrane and disordered proteins, the PDBmay

already containmost of the recurrent structural units (Kihara and Skolnick, 2003). However,

the sequence diversity possible using those recurring structural units is by no means

represented in the PDB. The gap between known sequence and structural space is one of

themain driving forces behind structural genomics (Chapter 40) aswell as amajor limitation

for complete coverage of large-scale comparative structure prediction methods.

The SCOP (Murzin et al., 1995; Andreeva et al., 2004), DALI (Holm and Sander, 1996;

Holm and Sander, 1999), and CATH (Orengo et al., 1997; Greene et al., 2007) databases

made the first comprehensive attempts to map protein structure space at the domain level.
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These three classification systems use a somewhat different definition of a domain and hence

differences in classification result (Day et al., 2003). This clearly reflects the difficulty of

uniquely defining a domain (Chapter 20). Given the notion of amore continuous protein fold

space than previously suspected, it may be more profitable to characterize structures at the

level of the sub-domain. Indeed, we can find plenty of references to recurrent subdomain

structures in the literature such as greek-key, jelly-roll, b-propeller, a-solenoid, and so on,
which are well accepted yet not systematically defined. The challenge then becomes

identifying the proper resolution of a map that is needed to solve the problem at hand.

One of our groups, using the structural alignments stored in theDBAli database, hasmade an

attempt to visually map the continuity and density of structural space at subdomain

resolution. As of August 2007, the DBAli database contained �1.67 billion pair-wise

structure alignments calculated byMAMMOTH.Using these comparisons,we have created

amap of the structural relationships between all members of our nonredundant set of 11,900

PDB chains (see Figure 16.1 for details about this set). In this map, two protein chains

(vertices) are linked (edges) if at least 40%of theirCa atoms can be superimposedwithin 4A
�

and result in an alignment of at least 40% or 20% sequence identity (Figure 16.3a and b,

respectively). Effectively, the resolution of such maps corresponds to aligning fragments of

approximately 50 residues. At such resolution, it is the sequence discontinuity that separates

protein fold space.More specifically, when the sequence identity threshold is as low as 20%,

4679 of all nonredundant chains are joined into a single largest cluster. This means that for

�40% of the vertices in the map, a path can be found by linking superposed fragments of at

least 50 residues. However, such continuity completely breaks by increasing the sequence

identity threshold to40%resulting in 10,121 clusters andonly�1%of chains formingpart of

Figure 16.3. Map of protein fold space. Two protein chains (vertices) are linked (edges) if at least

40% of their Ca atoms can be superposed within 4A
�
and result in an alignment of at least 40% or

20% sequence identity for panels a and b, respectively. (a) Map at 40% sequence identity of the

11,900nonredundant set.A totalof 2530clusterswith twoormore structures are shown.The largest

cluster in themap contains 115 chains. Themap does not show the 7591 singletons remaining after

clustering. (b) Map at 20% sequence identity of the 11,900 nonredundant set. A total of 1521

clusters with two ormore structures are shown. The largest cluster in themap contains 4679 chains.

The map does not show the 2924 singletons remaining after clustering. Both maps were produced

with the LGL program (Adai et al., 2004) and rendered by the lgl2ps script (Fred P. Davis).
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the largest cluster. Similar observations were already reached by one of our groups

(Shindyalov and Bourne, 2000). In that work, we clustered groups of structures based on

the results of an all-against-all comparison with the CE program. Such clustering resulted in

a highly repetitive set of superposed substructures not detectable by sequence similarity

alone. We observed as well that for some chains, different substructures constituted all or

parts of well-annotated folds. We concluded that mapping protein fold space using such

substructures could be useful for finding remote sequence homology and predicting the

structure and function of proteins (Friedberg and Godzik, 2005a; Friedberg and

Godzik, 2005b).

In summary, if the protein fold space is a continuous and dense territory, then many

different and systematic definitions of recurrent fragments are possible. It is important to

stress the need to carefully identify and define the appropriate level of resolution for

answering the biological question to be addressed. In short, there are great opportunities for

original thinking in defining the structural units relevant for characterizing protein structure

evolution.With the adventof structural genomics, this opportunity is evenmorepronounced.

THE IMPACT OF STRUCTURAL GENOMICS

Themotivation for improved protein structure comparison, alignment, and characterization

is currently defined quite simply by quantity—the rate of increase in the number of

experimentally determined new folds and the number of structures adopting each fold.

A recent review by Carugo (2007) already highlights the sudden increase in automatic

methods for structure comparison and alignment. Such methods require not only high

accuracy and coverage but also fast execution to cope with the increasing number of

structures.Automation should seek to reach the quality of human annotation, since no expert

is able to keep upwith rate of growth of the PDB. The increase in the number of structures is,

in part, due to a move toward high-throughput structure determination. Despite some recent

controversy about the cost and impact of structural genomics (SG) (Chandonia and

Brenner, 2006; Levitt, 2007; Liu, Montelione, and Rost, 2007; Petsko, 2007), it seems fair

(at least to us) to say that the technological advances accomplished by the SG consortia have

increased the success rate of structure determination while decreasing the cost per structure.

At the time of writing (August 2007), the PDB contained 5129 deposited structures from the

SG consortia with a rate of more than 800 per year being added over the past 4 years. About

half of those depositions were for structures with sequences that shared, at the date of

submission, less than 30% sequence identity to any other known structure in the PDB. Such

structures are then used for computationally predicting the structure of all their known

homologous sequences. For example, the New York Structural GenomiX Research Con-

sortium has deposited 426 structures in the PDB from which the ModPipe computational

package (Eswar et al., 2003) was able to predict 575,035 fold assignments and 56,302

reliable 3Dmodels (i.e.,�130 protein structure predictions per new released structure). The

reader can visit http://targetdb.pdb.org for up-to-date detailed statistics about the SG

deposited structures in the PDB (Chen et al., 2004).

It is important to note that an increase in deposited structures does not just imply

quantity, but also variety, complexity, and singularity. In recent years, the rate of deposition

of complex and nonglobular structures deposited in the PDBhas also increased. This trend is

likely to continue. The Protein Structure Initiative (PSI) responsible for structural genomics

in the United States has recently approved its second phase of funding to four of its original
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pilot centers as well as six new specialized centers, including two centers dedicated to

membrane proteins. Therefore, traditional laboratories as well as those within the SG

consortiawill likely continue to increase the number andvariety of predicted anddetermined

structuresdeposited in thePDBormodelingdatabases suchasModBase (Pieper et al., 2006).

One of the major challenges will be to characterize the functions of a growing number of

deposited structures with unknown function. In particular, biologists will be faced with the

problem of characterizing the intricate network of interactions between single and multiple

domain proteins.Diverse sources of informationwill be needed for tackling such challenges.

For example, high-resolution protein–protein interactions can be characterized by fitting

known ormodeled structure into a lower resolution structuremap of a complex,which could

be determined by cryoelectron microscopy (Topf and Sali, 2005).

THE FUTURE

Protein structure comparison and alignment is a well-studied area as the Wikipedia page

http://en.wikipedia.org/wiki/Structural_alignment_softwarewill attest. The field is plagued

by problems that afflict other areas of bioinformatics—lack of use of benchmark datasets,

papers without available software, andminor advances over previous efforts. Notwithstand-

ing, a significant understanding of the problem has been reached and methods continue to

improve.We point to some of what we believe are still open challenges for protein structure

comparison and alignment:

. Accurate and Fast Methods for Multiple Structure Alignment: Existing methods for

multiple structure alignment are reaching unprecedented levels of coverage and

accuracy. However, some of the most accurate methods are still computationally

prohibitive to be applied in large-scale and continuous experiments.

. Flexible Structure Alignment: While significant progress has been made, biological

features that depend on flexibility have yet to be considered as part of the alignment

procedure; for example, difference between open and closed states of an enzyme

induced by cofactors present in the structure and known allosteric interactions.

. Biologically Relevant Alignments: Current methods for structure comparison and

alignment usually focus on optimizing geometrical similarities between two or more

structures. However, function is not always related to geometrical features and

chemical, physical, or evolutional information can help in finding the most relevant

alignment between structures. Thus, methods that are able to account for additional

biological information might lead to more accurate alignments. Rather than align a

set of amino acids based solely on their 3D atomic coordinates, alignments will

include a variety of parameters that reflect secondary, tertiary, possibly quaternary

features, and functional features of the structures under study. This will require

significantly better annotation of structures than exist today if this is to be done in a

high-throughput mode.

. Automatic Optimization of Parameters: Related to the points raised above, new

methods that identify optimal parameters for each protein family would likely result

in a larger number of accurate alignments.

. Clustering and Classification: Currently, the PDB contains more than 90,000 protein

chains. A full set of comparisons requires that approximately 4� 109 comparisons be
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computed and stored. This is overwhelming for all but the fastest algorithms and

extensive computer clusters. As a result, compromises are made by introducing

various types of redundancy to reduce the number of computations to be made,

thereby losing important information. Faster and more biologically meaningful

clustering and classification algorithms are needed.

. Biologically Relevant Division of the Structural Space: Defining and identifying

unique structural units that are recurrent between protein structures remains an

unresolved issue. Domains and subdomains are currently used, butmore fine-grained

features may be needed.

. Leverage of Structure Alignments: During the last decade, we have seen the

development of several methods for fast and reliable pair-wise structure alignment.

Some of such methods have been applied in large-scale comparison of all-against-all

structures in the PDB. However, such alignments, which are then normally deposited

in databases, are barely used outside of the groups that generated them. A double

effort is needed to make the data easily accessible to other developers as well as to

develop new computational methods that leverage the benefits of such databases.

The ever-increasing number of structures and the scientific insights that structure

comparison and alignment canbring to classification, functional understanding, provisionof

powerful search tools (e.g., HMMs seeded by structure alignments) and so on will see

continued efforts to meet these challenges and guarantee that structure comparison and

alignment will remain an active area of research in years to come.

ACKNOWLEDGMENTS

We thank Dr. Fred P. Davis for the Perl script to render LGL output graphs. MAMR and EC

research is supported by the European Union (Marie Curie Program FP6-039722),

the Spanish Ministerio de Educación y Ciencia (BIO2007/66670), and the Generalitat

Valenciana (GV/2007/065).

REFERENCES

Abagyan RA, Batalov S (1997): Do aligned sequences share the same fold? J Mol Biol 273(1):

355–368.

Adai AT, Date SV, Wieland S, Marcotte EM (2004): LGL: creating a map of protein function with an

algorithm for visualizing very large biological networks. J Mol Biol 340(1):179–190.

Alexandrov NN (1996): SARFing the PDB. Protein Eng 9(9):727–732.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990): Basic local alignment search tool.

J Mol Biol 215(3):403–410.

AndreevaA, HoworthD, Brenner SE, HubbardTJ, Chothia C, MurzinAG (2004): SCOPdatabase in

2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32 (Database

issue):D226–D229.

Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C (2006):

Expresso: automatic incorporation of structural information inmultiple sequence alignments using

3D-Coffee. Nucleic Acids Res 34 (Web Server issue):W604–W608.

412 STRUCTURE COMPARISON AND ALIGNMENT



Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE

(2000): The Protein Data Bank. Nucleic Acids Res 28(1):235–242.

Boberg J, Salakoski T, Vihinen M (1992): Selection of a representative set of structures from

Brookhaven Protein Data Bank. Proteins 14(2):265–276.

Carugo O (2007): Recent progress in measuring structural similarity between proteins. Curr Protein

Pept Sci 8(3):219–241.

Chandonia J-M, Brenner S (2006): The impact of structural genomics: expectations and outcomes.

Science 311(5759):347–351.

Chen L, Oughtred R, Berman HM, Westbrook J (2004): TargetDB: a target registration database for

structural genomics projects. Bioinformatics 20(16):2860–2862.

Chew L, Huttlenlocher D, Kedem K, Kleinberg J (1999): Fast detection of common geometric

substructure in proteins. J Comput Biol 6:313–325.

Chothia C, Lesk AM (1986): The relation between the divergence of sequence and structure in

proteins. EMBO J 5(4):823–826.

Chothia C, Lesk AM (1987): The evolution of protein structures.Cold Spring Harb SympQuant Biol,

52(399–405).

Day R, Beck DA, Armen RS, Daggett V (2003): A consensus view of fold space: combining SCOP,

CATH, and the Dali Domain Dictionary. Protein Sci 12(10):2150–2160.

Diamond R (1976): Comparison of conformations using linear quadratic transformations. Acta

Crystallogr A 32:1–10.

Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA,

MadhusudhanMS, Yerkovich B, Sali A (2003): Tools for comparative protein structure modeling

and analysis. Nucleic Acids Res 31(13):3375–3380.

FischerD, Tsai CJ, NussinovR, WolfsonH (1995): A 3D sequence-independent representation of the

protein data bank. Protein Eng 8(10):981–997.

Friedberg I, Godzik A (2005a): Connecting the protein structure universe by using sparse recurring

fragments. Structure 13(8):1213–1224.

Friedberg I, Godzik A (2005b): Fragnostic: walking through protein structure space. Nucleic Acids

Res 33 (Web Server issue):W249–W251.

Gibrat JF, Madej T, Bryant SH (1996): Surprising similarities in structure comparison. Curr Opin

Struct Biol 6(3):377–385.

GodzikA (1996): The structural alignment between twoproteins: is there a unique answer?Protein Sci

5:1325–1338.

Godzik A, JambonM, Friedberg I (2007): Computational protein function prediction: arewemaking

progress? Cell Mol Life Sci 64(19–20) 2505–2511.

Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, DibleyM, Redfern O, Pearl F, Nambudiry R,

Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007): The CATH domain structure

database: newprotocols and classification levels give amore comprehensive resource for exploring

evolution. Nucleic Acids Res 35 (Database issue):D291–D297.

Guda C, Scheeff ED, Bourne PE, Shindyalov IN (2001): A new algorithm for the alignment

of multiple protein structures using Monte Carlo optimization. Pac Symp Biocomput

275–286.

Guda C, Lu S, Scheeff ED, Bourne PE, Shindyalov IN (2004): CE-MC: a multiple protein structure

alignment server. Nucleic Acids Res 32 (Web Server issue):W100–W103.

Guda C, Pal LR, Shindyalov IN (2006): DMAPS: a database of multiple alignments for protein

structures. Nucleic Acids Res 34 (Database issue):D273–D276.

Hadley C, Jones DT (1999): A systematic comparison of protein structure classifications: SCOP,

CATH and FSSP. Structure 7:1099–1112.

REFERENCES 413



Haspel N, Tsai CJ, Wolfson H, Nussinov R (2003): Hierarchical protein folding pathways: a

computational study of protein fragments. Proteins 51(2):203–215.

Hendrickson WA (1979): Transformations to optimize the superposition of two similar structures.

Acta Crystallogr A 35:158–163.

Hobohm U, Scharf M, Schneider R, Sander C (1992): Selection of representative protein data sets.

Protein Sci 1(3):409–417.

Holland T, Veretnik S, Shindyalov I, Bourne P (2006): Partitioning protein structures into domains:

why is it so difficult? J Mol Biol 361(3):562–590.

Holm L, Sander C (1993a): Globin fold in a bacterial toxin. Nature 361(6410):309.

Holm L, Sander C (1993b): Protein structure comparison by alignment of distance matrices. J Mol

Biol 233(1):123–138.

Holm L, Sander C (1994a): Searching protein structure databases has come of age. Proteins 19(3):

165–173.

Holm L, Sander C (1994b): The FSSP database of structurally aligned protein fold families. Nucleic

Acids Res 22(17):3600–3609.

Holm L, Sander C (1996): Mapping the protein universe. Science 273(5275):595–603.

Holm L, Sander C (1999): Protein folds and families: sequence and structure alignments. Nucleic

Acids Res 27(1):244–247.

Ilyin VA, Abyzov A, Leslin CM (2004): Structural alignment of proteins by a novel TOPOFIT

method, as a superimposition of common volumes at a topomax point. Protein Sci 13(7): 1865–

1874.

Jia Y, Dewey TG, Shindyalov IN, Bourne PE (2004): A new scoring function and associated

statistical significance for structure alignment by CE. J Comput Biol 11(5):787–799.

JohnsonMS, Overington JP, Blundell TL (1993): Alignment and searching for common protein folds

using a data bank of structural templates. J Mol Biol 231(3):735–752.

Kabsch W (1976): Solution for best rotation to relate two sets of vectors. Acta Crystallogr A

45:922–923.

Kearsley SK (1989): Structural comparison using restraint inhomogeneous transformations. Acta

Crystallogr A 45:628–635.

Kihara D, Skolnick J (2003): The PDB is a covering set of small protein structures. JMol Biol 334(4):

793–802.

Kikuchi T (1992): Similarity between average distance maps of structurally homologous proteins. J

Protein Chem 11(3):305–320.

Koehl P (2001): Protein structure similarities. Curr Opin Struct Biol 11(3):348–353.

Kolbeck B, May P, Schmidt-Goenner T, Steinke T, Knapp EW (2006): Connectivity independent

protein-structure alignment: a hierarchical approach. BMC Bioinformatics 7:510.

Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006): MUSTANG: a multiple structural

alignment algorithm. Proteins 64(3):559–574.

Lemmen C, Lengauer T (2000): Computational methods for the structural alignment of molecules. J

Comput Aided Mol Des 14(3):215–232.

Lesk AM, Chothia C (1980): How different amino acid sequences determine similar protein

structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136(3):225–270.

Lesk AM, Chothia C (1982): Evolution of proteins formed by beta-sheets. II. The core of the

immunoglobulin domains. J Mol Biol 160(2):325–342.

Lessel U, Schomburg D (1994): Similarities between protein 3-D structures. Protein Eng 7(10):

1175–1187.

Levitt M (2007): Growth of novel protein structural data. Proc Natl Acad Sci USA 104(9):3183–

3188.

414 STRUCTURE COMPARISON AND ALIGNMENT



Li Z, Ye Y, Godzik A (2006): Flexible Structural Neighborhood—a database of protein structural

similarities and alignments. Nucleic Acids Res 34 (Database issue):D277–D280.

Liu J, Montelione GT, Rost B (2007): Novel leverage of structural genomics. Nat Biotechnol 25(8):

849–851.

Lupas AN, Ponting CP, Russell RB (2001): On the evolution of protein folds: are similar motifs in

different protein folds the result of convergence, insertion, or relics of an ancient peptide world?

J Struct Biol 134(2–3):191–203.

Lupyan D, Leo-Macias A, Ortiz AR (2005): A new progressive-iterative algorithm for multiple

structure alignment. Bioinformatics 21(15):3255–3263.

Madej T, Gibrat JF, Bryant SH (1995): Threading a database of protein cores. Proteins 23(3):

356–369.

Marti-Renom MA, Ilyin VA, Sali A (2001): DBAli: a database of protein structure alignments.

Bioinformatics 17(8):746–747.

Marti-Renom MA, Pieper U, Madhusudhan MS, Rossi A, Eswar N, Davis FP, Al-Shahrour F,

Dopazo J, Sali A (2007): DBAli tools: mining the protein structure space. Nucleic Acids Res

35(Web Server issue):W393–W397.

Martinez L, Andreani R, Martinez JM (2007): Convergent algorithms for protein structural

alignment. BMC Bioinformatics 8(1):306.

Mayr G, Domingues FS, Lackner P (2007): Comparative analysis of protein structure alignments.

BMC Struct Biol 7:50.

McMahon SA, Miller JL, Lawton JA, Kerkow DE, Hodes A, Marti-Renom MA, Doulatov S,

NarayananE, Sali A, Miller JF, Ghosh P (2005): TheC-type lectin fold as an evolutionary solution

for massive sequence variation. Nat Struct Mol Biol 12(10):886–892.

Murzin AG, Brenner SE, Hubbard T, Chothia C (1995): SCOP: a structural classification of proteins

database for the investigation of sequences and structures. J Mol Biol 247:536–540.

Orengo CA, Flores TP, Taylor WR, Thornton JM (1993): Identification and classification of protein

fold families. Protein Eng 6(5):485–500.

Orengo C (1994): Classification of protein folds. Curr Biol 4(429–440).

Orengo CA, Taylor WR (1996): SSAP: sequential structure alignment program for protein structure

comparison. Methods Enzymol 266:617–635.

Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997): CATH—a

hierarchic classification of protein domain structures. Structure 5:1093–1108.

Ortiz AR, Strauss CE, Olmea O (2002): MAMMOTH (matching molecular models obtained from

theory) an automated method for model comparison. Protein Sci 11(11):2606–2621.

Overington JP, Zhu ZY, Sali A, Johnson MS, Sowdhamini R, Louie GV, Blundell TL (1993):

Molecular recognition in protein families: a database of aligned three-dimensional structures of

related proteins. Biochem Soc Trans 21(Pt 3)(3):597–604.

Petsko GA (2007): An idea whose time has gone. Genome Biol 8(6):107.

Phillips DC (1970): The development of crystallographic enzymology. Biochem Soc Symp

30:11–28.

Pieper U, Eswar N, Davis FP, Braberg H, MadhusudhanMS, Rossi A, Marti-RenomM, Karchin R,

Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A (2006): MODBASE: a database

of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34

(Database issue):D291–D295.

Reeves GA, Dallman TJ, Redfern OC, Akpor A, Orengo CA (2006): Structural diversity of domain

superfamilies in the CATH database. J Mol Biol 360(3):725–741.

RossmannMG, Argos P (1978): The taxonomy of binding sites in proteins.Mol Cell Biochem 21(3):

161–182.

REFERENCES 415



RossmanMG (1981): Evolution of glycolytic enzymes.Philos TransR Soc LondBBiol Sci 293(1063):

191–203.

Rost B (1997): Protein structures sustain evolutionary drift. Fold Des 2:S19–S24.

Rost B (1999): Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94.

Russell RB, Copley RR, Barton GJ (1996): Protein fold recognition bymapping predicted secondary

structures. J Mol Biol 259(3):349–365.

Sali A, Blundell TL (1990): Definition of general topological equivalence in protein structures. A

procedure involving comparison of properties and relationships through simulated annealing and

dynamic programming. J Mol Biol 212(2):403–428.

Sali A, Blundell TL (1993): Comparative protein modelling by satisfaction of spatial restraints. JMol

Biol 234(3):779–815.

Sander C, Schneider R (1991): Database of homology-derived protein structures and the structural

meaning of sequence alignment. Proteins 9:56–68.

Scheeff ED, Bourne PE (2005): Structural evolution of the protein kinase-like superfamily. PLoS

Comput Biol 1(5):e49.

Scheeff ED, Bourne PE (2006): Application of protein structure alignments to iterated hiddenMarkov

model protocols for structure prediction. BMC Bioinformatics 7:410.

Shapiro A, Botha JD, PastoreA, LeskAM (1992): Amethod formultiple superposition of structures.

Acta Crystallogr A 48(Pt 1):11–14.

Shatsky M, Nussinov R, Wolfson HJ (2004): A method for simultaneous alignment of multiple

protein structures. Proteins 56(1):143–156.

Shindyalov IN, Bourne PE (1998): Protein structure alignment by incremental combinatorial

extension (CE) of the optimal path. Protein Eng 11(9):739–747.

Shindyalov IN, Bourne PE (2000): An alternative view of protein fold space. Proteins 38(3):

247–260.

Siew N, Elofsson A, Rychlewski L, Fischer D (2000): MaxSub: an automated measure for the

assessment of protein structure prediction quality. Bioinformatics 16(9):776–785.

Soding J, Lupas AN (2003): More than the sum of their parts: on the evolution of proteins from

peptides. Bioessays 25(9):837–846.

Stebbings LA, Mizuguchi K (2004): HOMSTRAD: recent developments of the Homologous Protein

Structure Alignment Database. Nucleic Acids Res 32(Database issue):D203–D207.

Szustakowski JD, Weng Z (2000): Protein structure alignment using a genetic algorithm. Proteins

38(4):428–440.

TendulkarAV, JoshiAA, SohoniMA, Wangikar PP (2004):Clustering of protein structural fragments

reveals modular building block approach of nature. J Mol Biol 338(3):611–629.

Topf M, Sali A (2005): Combining electron microscopy and comparative protein structure modeling.

Curr Opin Struct Biol 15(5):578–585.

Tsigelny I, Shindyalov IN, Bourne PE, Sudhof TC, Taylor P (2000): Common EF-hand motifs in

cholinesterases and neuroligins suggest a role for Ca2þ binding in cell surface associations.

Protein Sci 9(1):180–185.

Usha R, Murthy MR (1986): Protein structural homology: a metric approach. Int J Pept Protein Res

28(4):364–369.

Ye Y, Godzik A (2003): Flexible structure alignment by chaining aligned fragment pairs allowing

twists. Bioinformatics 19(2):II246–II255.

Ye Y, Jaroszewski L, LiW, Godzik A (2003): A segment alignment approach to protein comparison.

Bioinformatics 19(6):742–749.

Ye Y, Godzik A (2004): FATCAT: a web server for flexible structure comparison and structure

similarity searching. Nucleic Acids Res 32(Web Server issue):W582–W585.

416 STRUCTURE COMPARISON AND ALIGNMENT



Ye Y, Godzik A (2005): Multiple flexible structure alignment using partial order graphs. Bioinfor-

matics 21(10):2362–2369.

Zemla A (2003): LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res

31(13):3370–3374.

Zhang Y, Skolnick J (2005a): The protein structure prediction problem could be solved using the

current PDB library. Proc Natl Acad Sci USA 102(4):1029–1034.

Zhang Y, Skolnick J (2005b): TM-align: a protein structure alignment algorithm based on the TM-

score. Nucleic Acids Res 33(7):2302–2309.

REFERENCES 417




