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P roteins interact with each other in a highly specific
manner, and protein interactions play a key role in
many cellular processes; in particular, the distortion

of protein interfaces may lead to the development of many
diseases. To understand the mechanisms of protein
recognition at the molecular level and to unravel the global
picture of protein interactions in the cell, different
experimental techniques have been developed. Some
methods characterize individual protein interactions while
others are advanced for screening interactions on a genome-
wide scale. In this review we describe different experimental
techniques of protein interaction identification together with
various databases which attempt to classify the large array of
experimental data. We discuss the main promises and pitfalls
of different methods and present several approaches to verify
and validate the diverse experimental data produced by high-
throughput techniques.

Introduction

It is now becoming clear that protein interactions
determine the outcome of most cellular processes [1–4].
Therefore, identifying and characterizing protein–protein
interactions and their networks is essential for understanding
the mechanisms of biological processes on a molecular level.
Despite the fact that protein interactions are remarkably
diverse, all protein interfaces share certain common
properties. Protein interactions can be classified into
different types depending on their strength (permanent and
transient), specificity (specific or nonspecific), the location of
interacting partners within one or on two polypeptide chains,
and the similarity between interacting subunits (homo- and
hetero-oligomers). It has been shown that interface types are
significantly different in amino acid composition so that it is
possible to predict the type of interaction interface from
amino acid composition alone [5]. Earlier structural analysis
of interfaces showed that most interfaces consist of
completely buried cores surrounded by partially accessible
rims [6,7] with the overall size of about 1600 6 400 Å2 (a
‘‘standard size’’ patch) [8]. It has been found that certain

amino acids are preferred on protein interfaces and that the
amino acid composition of the core differs considerably from
the rim [6,7,9,10]. More recent models suggested that the
protein binding site consists of a few independent highly
packed regions, so called ‘‘hot spots,’’ which contribute
significantly to the free energy of binding [11–13]. Hot spots
were found to be structurally conserved [14], and the
energetics of interactions at the hot spots have been analyzed
in several studies [15–18].
In many cellular processes, proteins recognize specific

targets and bind them in a highly regular manner. The
specificity of interactions in these cases is determined by
structural and physico–chemical properties of two
interacting proteins. As a result, there should be a certain
degree of conservation in the interaction patterns between
similar proteins and domains. Indeed, it has been found that
close homologs almost always interact in the same way and
protein–protein interactions place certain evolutionary
constraints on protein sequence and structural divergence
[19–24]. Recent studies confirm that the total number of
interaction types or modes is limited and rather small [25–
27]. On the other hand, remotely related proteins/domains
can have different interaction modes [21,26,28]; and the
conservation of such protein interfaces is similar to the
average conservation of rest of the protein [29–32].
In this review and its companion review in the April issue

[33], we attempt to classify and systemize the array of
experimental and theoretical data on the identification and
prediction of protein interactions. In this review we focus on
the generic experimental techniques for identifying protein
interactions and the databases storing the information
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obtained from these experiments. In the second review, we
present different methods to predict protein and domain
interactions and discuss various challenges faced in this field
with respect to limited prediction accuracy.

Experimental Methods for Identifying and
Characterizing Protein Interactions

Protein interactions can be analyzed by different genetic,
biochemical, and physical methods, which are listed in Table
1 and shown in Figure 1. Some techniques enable screening of
a large number of proteins in a cell, such as yeast two-hybrid
(Y2H), tandem affinity purification (TAP), mass spectroscopy
(MS), DNA and protein microarrays, synthetic lethality, and
phage display. Other methods focus on monitoring and
characterizing specific biochemical and physico–chemical
properties of a protein complex.

Yeast two-hybrid method. The development of the Y2H
technique has considerably accelerated the screening of
protein interactions in vivo. Y2H is based on the fact that
many eukaryotic transcription activators have at least two
distinct domains, one that directs binding to a promoter
DNA sequence (BD) and another that activates transcription
(AD) (Figure 1A). It was demonstrated that splitting BD and
AD inactivates the transcription, but the transcription can be
restored if a DNA-binding domain is physically (not
necessarily covalently) associated with an activating domain
[34]. According to the Y2H method, a protein of interest is
fused to BD (bait). This chimeric protein is cloned in an
expression plasmid, which is then transfected into a yeast cell.
A similar procedure creates a chimeric sequence of another
protein fused to AD (prey). If two proteins physically interact,
the reporter gene is activated. The most broadly used Y2H
systems are GAL4/LexA-based, where the GAL4 protein
controls in yeast the expression of the LacZ gene encoding
beta-galactosidase. Numerous variations of Y2H have been
developed including systems with several reporter genes, one-
hybrid and three-hybrid systems for identifying proteins
interactions with DNA and RNA [35–38], systems for
detecting interactions in mammalian and prokaryotic cells,

and systems for screening the interactions between
membrane proteins [39–43].
For screening entire genomes, the Y2H method has been

advanced into two main approaches [44–46]: matrix-based
and library-based.
In the matrix approach, a matrix of prey clones is created

where each clone expresses a particular prey protein in one
well of a plate. Then each bait strain is mated with an array of
prey strains and those diploids where two chimeric proteins
interact are selected based on the expression of a reporter
gene and the position on a plate.
In the library approach, each bait is screened against an

undefined prey library containing random cDNA fragments
or open reading frames (ORFs). Diploid positives are selected
based on their ability to grow on specific substrates; and
interacting proteins are determined by DNA sequencing. The
first two genome-wide analyses of the yeast ‘‘interactome’’
revealed 692 and 841 putative interactions, respectively
[47,48]. The overlap between these two experimental studies
was quite small; both methods shared only 141 interactions,
about 20% of the interaction data [48]. Recently, Y2H has
been used to identify interactions in worm [2], fly [1], and
human [49,50].
The small overlap between Y2H experiments can be

explained by different factors, among them: differences in
protein interaction sampling, Y2H bias towards nonspecific
interactions [51], and limitations of the Y2H method itself.
For example, proteins initiating transcription by themselves
cannot be targeted in Y2H experiments; and the use of
sequence chimeras can impose difficulties since fusion can
change the structure of a target protein. In addition, protein
folding and posttranslational modifications can differ
between yeast and other organisms. This makes it difficult to
screen proteins from mammalian and prokaryotic cells using
Y2H as well as cytoplasmic and membrane proteins. To
validate the quality of Y2H protein interactions in vivo,
different in vitro techniques can be used.
Mass spectroscopy. MS is a powerful method of studying

macromolecular interactions in vitro. The principle of the
MS method is to produce ions which can be detected based

Table 1. Different Experimental Methods Measuring Protein Interactions

Method High-Throughput

Approach

Living Cell

Assay

Type of Interactions Type of Characterization

Y2H [47,48] þ In vivo Physical interactions (binary) Identification

Affinity purification–MS [61] þ In vitro Physical interactions (complex) Identification

DNA microarrays/Gene coexpression [113] þ In vitro Functional association Identification

Protein microarrays [114–116] þ In vitro Physical interaction (complex) Identification

Synthetic lethality [85,86] þ In vivo Functional association Identification

Phage display [117] þ In vitro Physical interaction (complex) Identification

X-ray crystallography, NMR spectroscopy [84] � In vitro Physical interactions (complex) Structural and biological characterization

Fluorescence resonance energy transfer [89] � In vivo Physical interaction (binary) Biological characterization

Surface plasmon resonance [91] � In vitro Physical interaction (complex) Kinetic, dynamic characterization

Atomic force microscopy [93] � In vitro Physical interaction (binary) Mechanical, dynamic characterization

Electron microscopy [118] � In vitro Physical interaction (complex) Structural and biological characterization

High-throughput techniques are indicated with pluses (second column), and those which can provide information on interactions in vivo are shown in the third column. Fourth column
indicates whether the method supplies data on physically interacting proteins in a complex (‘‘complex’’) or only pairwise interactions (‘‘binary’’). Methods inferring interactions through
functional association are shown as well. The type of protein interaction characterization is shown in the last column.
doi:10.1371/journal.ppat.0030042.t001
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on their mass-to-charge ratios, thereby allowing the
identification of polypeptide sequences [36,52,53] (Figure 1B).
The problem of converting protein/peptide molecules from
the condensed phase into ions in the gas phase is solved by
using Electrospray Ionization (ESI) [54] and Matrix Assisted
Laser Desorption Ionization (MALDI) [55,56]. Different

algorithms have been developed to analyze mass spectra and
to identify proteins by their sequence [57–60]. Some of them
find correlations between theoretical and experimental
spectra while others use de novo algorithms to infer peptide
sequences from theoretical interpretation of the mass
spectra. Despite the usefulness of MS for the characterization

doi:10.1371/journal.ppat.0030042.g001

Figure 1. Schematic Representations of Main Experimental Techniques Used for High-Throughput Analysis of Protein Interactions

(A) Y2H detects interactions between proteins X and Y, where X is linked to BD domain which binds to upstream activating sequence (UAS) of a
promoter.
(B) MS identifies polypeptide sequence.
(C) TAP purifies protein complexes and removes the molecules of contaminants.
(D) Gene coexpression analysis produces the correlation matrix where the dark areas show high correlation between expression levels of corresponding
genes.
(E) Protein microarrays (protein chips) can detect interactions between actual proteins rather than genes: target proteins immobilized on the solid
support are probed with a fluorescently labeled protein.
(F) Synthetic lethality method describes the genetic interaction when two individual, nonlethal mutations result in lethality when administered together
(a� b�).
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of interacting proteins, purification of protein complexes
turns out to be the limiting step of their identification. To
address this, TAP has been developed.

TAP method of complex purification. A TAP tag consists of
two IgG binding domains of Staphylococcus protein A and a
calmodulin binding peptide separated by the tobacco etch
virus protease cleavage site [61,62] (Figure 1C). A target
protein open reading frame (ORF) is fused with the DNA
sequences encoding the TAP tag and is expressed in yeast
where it can form native complexes with other proteins. At
the first step of the TAP purification, protein A binds tightly
to an IgG matrix; and after washing out the contaminants, the
protease cleaves the link between protein A and IgG matrix.
The eluate of this first step is then incubated with
calmodulin-coated beads in the presence of calcium. After
washing, the target protein complex is released. The
components of each complex are screened by polyacrylamide
gel electrophoresis, cleaved by proteases, and the fragments
are identified by MS. Comparing Y2H and TAP–MS, it should
be noted that both methods generate a lot of false positives
and miss a lot of known interactions. Y2H has the advantages
of being an in vivo technique and of detecting transient
interactions. In contrast, TAP–MS can report on higher-
order interactions beyond binary and, therefore, provides
direct information on protein complexes.

Several large-scale studies of protein complexes have been
performed using TAP–MS and Y2H methods [2,4,63,64]. For
example, Krogan et al. showed that 7,123 protein interactions
identified with high confidence in yeast can be clustered into
547 protein complexes [3].

Gene co-expression. Since the function of a protein
complex depends on the functionality of all subunits,
subunits should be present in stoichiometric amounts and
gene expression levels of subunits in a complex should be
related. Gene expression profiles can be provided, for
example, from cell cycle experiments and expression levels of
a gene under different conditions. Expression profile
similarity can be calculated as a correlation coefficient
between relative expression levels of two genes/proteins or
the normalized difference between their absolute expression
levels or calculated using other methods [65–69] (Figure 1D).
The distribution of these quantities for target proteins then
can be compared with the distributions for random
noninteracting protein pairs. It was shown that the most
obvious coexpression comes from permanent complexes such
as ribosome and proteasome [65]. Several studies have tackled
the problem of gene co-expression and demonstrated that
interacting proteins in yeast are more likely to have their
genes coexpressed compared with noninteracting proteins
[65,70–77]. Moreover, it was shown that expression levels of
physically interacting proteins coevolve, and coevolution of
gene expression can be a better predictor of protein
interactions than coevolution of amino acid sequences [78].
To infer the interactions between the genes, the DNA
microarray methodology can be successfully used in the
conjunction with the synthetic lethality method.

Synthetic lethality method. It is not very well-understood
how genetic variation influences phenotype and how genes
interact with each other producing different phenotypes in
different strains of the same species [77,78]. These problems
can be addressed by using various genetic interaction
methods, the most common of which is the synthetic lethality

method (Figure 1F). The synthetic lethality method produces
mutations or deletions of two separate genes which are viable
alone but cause lethality when combined together in a cell
under certain conditions [78–83]. Since these mutations are
lethal, they cannot be isolated directly and should be
synthetically constructed. Synthetic interaction can point to
the possible physical interaction between two gene products,
their participation in a single pathway, or a similar function.
For example, synthetic lethality experiments enabled the
prediction of the unknown function of the YLL049W gene as
belonging to the dynein–dynactin pathway, and the bridging
together of the two pathways of the parallel mitotic exit
network and the Cdc14 early anaphase release pathway [83].
Monitoring specific protein interactions. The most detailed

information about protein interaction interfaces at the
atomic level can be provided by X-ray crystallography and
NMR spectroscopy, but the number of solved protein
complexes remains low [84]. At the same time, the real-time
characterization of interacting proteins in vivo can be
achieved with various spectroscopic techniques requiring the
attachment of a spectroscopic label to a target protein [87,88]
(Table 1). A powerful technique in this respect is fluorescence
resonance energy transfer (FRET), which can occur only if
two fluorophores are located close to each other [89].
Another effective method, surface plasmon resonance (SPR),
does not require spectroscopic labeling and can detect
interactions between soluble ligands and immobilized
receptors [90,91]; while the isothermal titration calorimetry
(ITC) technique allows for direct measurement of the
enthalpy of binding [92]. Recently, new methods have been
developed to analyze protein interactions at the single-
molecule level. For example, atomic force microscopy can
fairly accurately measure interaction forces ([93]) while
fluorescence techniques can characterize conformational
changes in proteins upon binding [94].
Protein interaction networks derived from experiments.

The fast development of experimental techniques for protein
interactions has enabled the construction and systematic
analysis of interaction networks [1,2,95]. Interaction maps
obtained for one species can be used to predict interaction
networks in other species, to identify functions of unknown
proteins, and to get insight into the evolution of protein
interaction patterns. The interaction map analyses and
comparisons are based on the observation that many
interactions are conserved among species (‘‘interologs’’) [46].
Sequence-based searches for ‘‘interologs’’ were able to
identify 16%–31% of true ‘‘interologs’’ (tested using Y2H
system) even between remotely related species such as yeast
and worm [96]. Analysis of conservation in the networks
produced by gene co-expression data revealed that interologs
correspond to the functionally related genes responsible for
core biological processes [77]. Moreover, a multiple-species
network has been constructed by identifying pairs of genes
with correlated expression in different organisms. A
multiple-species network has shown to perform better than a
single-species network in linking together functionally
related genes.
Verification of protein interactions. Validation of protein

interaction data is difficult; except for small datasets on
protein interactions provided by the Protein Data Bank
(PDB) [84] and the Munich Information Center for Protein
Sequences (MIPS) [97], there is no comprehensive gold
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standard interaction set. Several methods have been
proposed for verification of protein interaction data
[66,67,76,98,99], and some of them are described here.

Expression profile reliability method (EPR) [66] is based on the
observation that interacting proteins are coexpressed. Two
distributions of expression distances are defined for
noninteracting and reliably interacting proteins. The
distribution of expression distances for a protein set of
interest is assumed to be a linear combination of two
predefined distributions with the linear coefficient that
characterizes the accuracy of a given dataset.

Paralogous verification method (PVM) [66] is based on the
observation that if two proteins interact, their paralogs most
likely interact. It gives more reliability to the interaction of
two families that contain a greater number of interactions
between paralogous proteins. This method identified ;40%
true interactions at a 1% error rate.

Protein localization method (PLM) [98] defines true positives as
interacting proteins that are localized in the same cellular
compartment and/or interacting proteins that are annotated
to have a common cellular role. PLM showed that the
accuracy of experimental data strongly depends on the
method with up to 50% true positives detected in Y2H
experiments and up to 100% true positives detected in
immunoprecipitation experiments [100].

Protein and domain interaction databases. A large variety
of databases exists to study binary protein interactions and
the higher order interactions in protein complexes. A
summary of some available databases is given in Tables 2 and
3. Different databases contain interactions obtained by direct
submission from experimentalists and by mining literature
and other data sources; in some cases the data is verified using
automated algorithms or manual curation. In addition to

direct detection of physical protein interactions, indirect
methods can be used to predict the functional association
between proteins or to predict the location of the interaction
interface itself. There is indeed a wide range of detail
characterizing the interactions available from different
databases. For example, Y2H data gives the identity of
interacting proteins, electron microscopy provides relative
positional information of interacting proteins, and
crystallography provides full atomic detail of interaction
surfaces. In addition, interacting proteins can be studied
either as complete units or by domains used as the units of
interaction. Consequently, in this review we group all
databases into protein and domain-related databases.
In spite of the interaction data diversity, there exist

considerable overlaps in the datasets contained in the
databases, making it difficult to recommend a single resource
for a particular type of information. In one effort to deal with
this redundancy, the International Molecular Exchange
Consortium (IMEx) has been formed in which databases agree
to share their data in a consistent and timely fashion (Table
2). In addition, a standard data model has been proposed for
the representation and exchange of protein interaction data
[101]. A few example databases from Table 2 will now be
highlighted to illustrate different types of interaction data
available.

Protein Interaction Databases
Database of Interacting Proteins. The Database of

Interacting Proteins (DIP) contains experimentally
determined protein interactions and includes a core subset of
interactions that have passed a quality assessment [102].
Interaction data are obtained from the literature; PDB; and
high-throughput methods such as Y2H, DNA and protein
microarrays; and TAP–MS analysis of protein complexes.
Several methods are employed to assess the quality of
interaction data and are offered as a service for query
interactions. DIP has links to a couple of related databases

Table 2. Databases Available for Searching and/or Downloading
Data Related to Protein Interactions

Database Proteins/Domains Type Number of Interactions

DIPa, LiveDIP P E,S 55,733

BINDa P E,C,S 83,517

MPact/MIPSa P E,C,F 15,488 (4,300)b

STRING P E,P,F 730,000 (proteins)

MINTa P E,C 71,854

IntActa P E,C 68,165

BioGRIDa P E,C 116,000 (30,000)b

HPRD P E,C 33,710

ProtCom P,D S,H 1,770

3did, Interprets D S,H 3,304

Pibase, ModBase D S,H 2,387

CBM D S 2,784

SCOPPI D S 3,358

iPfam D S 3,019

InterDom D P 30,037

DIMA D F,S —

Prolinks P F —

Listed are: the name of the database; the unit of interaction, protein (P) or domain (D);
type of data (high-throughput experimental data (E), structural data (S), manual curation
(C), functional predictions (F), and interface homology modeling (H)); and the number of
interactions.
aDatabases are members of the International Molecular Exchange Consortium (IMEx)
(http://imex.sourceforge.net).
bNumber of interactions listed in parentheses is for curated set.
doi:10.1371/journal.ppat.0030042.t002

Table 3. URLs and Primary Citations for Protein Interaction–
Related Databases

Database URL/FTP

DIP [102], LiveDIP[103] http://dip.doe-mbi.ucla.edu

BIND [105] http://bind.ca

MPact/MIPS [97] http://mips.gsf.de/services/ppi

STRING [119] http://string.embl.de

MINT [120] http://mint.bio.uniroma2.it/mint

IntAct [121] http://www.ebi.ac.uk/intact

BioGRID [122] http://www.thebiogrid.org

HPRD [123] http://www.hprd.org

ProtCom [124] http://www.ces.clemson.edu/compbio/ProtCom

3did [108], Interprets[125] http://gatealoy.pcb.ub.es/3did/

Pibase [107], ModBase [126] http://alto.compbio.ucsf.edu/pibase

CBM [26] ftp://ftp.ncbi.nlm.nih.gov/pub/cbm

SCOPPI [111] http://www.scoppi.org/

iPfam [127] http://www.sanger.ac.uk/Software/Pfam/iPfam

InterDom [128] http://interdom.lit.org.sg

DIMA [129] http://mips.gsf.de/genre/proj/dima/index.html

Prolinks [104] http://prolinks.doe-mbi.ucla.edu/cgi-bin/

functionator/pronav/

doi:10.1371/journal.ppat.0030042.t003
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including LiveDIP, which records information about the state
of a biological interaction, such as covalently modified,
conformational, or cellular location states [103]. Another
database related to DIP is Prolinks, which brings together
four methods of linking proteins: phylogenetic profiles,
Rosetta Stone, gene neighbors, and gene clusters[104]. The
database includes a Proteome Navigator tool to browse the
linkages and view accompanying data.

Biomolecular Interaction Network Database. The
Biomolecular Interaction Network Database (BIND) includes
high-throughput experimental datasets and protein
complexes from PDB [105,106]. It contains a variety of
curated experimental data. A generalized data specification
handles not only various types of protein interaction data,
but also protein–small molecule interactions and protein–
nucleic acid interactions. An interaction viewer is provided to
browse the interaction space. BIND also can distinguish
different functional types of interactions.

Munich MPact/MIPS database.MPact is a resource to access
MIPS, which contains a manually curated yeast protein
interaction dataset [97] collected by curators from the
literature. The resource also includes high-throughput results
for yeast, but keeps this data separate. MIPS is often used as a
standard of truth database for evaluating the quality of data
and the accuracy of interaction prediction methods.

Domain Interaction Databases
PIBASE database. PIBASE is a database of domain

interactions from the protein structure data [107]. It uses
SCOP and CATH domain definitions to find putative domain
interactions. Several methods are employed to remove
redundancy in structural data; for example, structural
comparisons of interfaces are made between domains within
one structure. The database combines physicochemical
properties of protein binding sites and has a link to
MODBASE [108], containing models of three-dimensional
structures that allow use of PIBASE for modeling of putative
domain interfaces.

3did database. 3did allows one to explore the details of
domain interactions from protein structure data (yeast
interactions are also included) [109]. For each domain, an
overview is given of all its interactions with other domains,
showing different interaction types. In some cases, dot plots
of structural comparisons between interaction interfaces
show the variance of the interactions between pairs of
domain families. Database entries are also supplied with the
GO-based functional annotations. InterPreTS is a Web-based
service associated with 3did that predicts domain interactions
based on sequence homology of query proteins to a database
of interacting domains (DBID) [21].

Conserved Binding Mode database. The Conserved Binding
Mode (CBM) database is a collection of domain interactions
from the structure data where domains are defined by the
Conserved Domain Database [110]. Unlike other structure-
based databases, domain interactions are grouped by
geometry into conserved interaction modes for each pair of
domain families across all PDB structures [26]. Structural
superpositions are used to infer CBMs from different
members of interacting domain families docking in the same
way. Such domain interactions with recurring structural
themes have greater significance to be biologically relevant,
unlike spurious crystal packing interactions. CBMs can also

assist in analyzing protein interaction network topology by
emphasizing connections made in a biological context. Finally,
the CBM database can be used to categorize the specific
interaction surfaces that have evolved from conserved
domains and thereby allows for the homology modeling of
protein interaction interfaces. A similar approach for
grouping interaction patterns for SCOP domains was recently
undertaken with the SCOPPI database [111].
Domain Interaction Map database. Domain Interaction

Map (DIMA) database is a domain interaction map derived
from phylogenetic profiling Pfam domains [97]. Instead of
looking at entire protein sequences, the algorithm compares
the occurrences of domains across genomes and associates
similar patterns of occurrences with functional associations.
The method works well for domains with moderate
information content that have distinct phylogenetic profiles.
In this paper we have reviewed a wide spectrum of

experimental techniques for identifying and characterizing
protein interactions; each technique can provide a piece in
the puzzle of mechanisms of protein recognition [112].
Despite enormous efforts in this field, the overall picture is
still incomplete, which is not surprising given the enormous
complexity of a cell. Indeed, proteins can behave differently
in different parts of the cell, and many proteins form
transient complexes that are difficult to identify. Moreover,
evolutionarily conserved proteins have much better coverage
in experiments than the proteins restricted to a certain
organism. The low coverage together with the small overlap
between different experimental methods calls for the
development of theoretical approaches for interaction data
verification and prediction, the topic we address in our
companion review [33]. &
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