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Presentation outline
• Variation data resources: 

dbSNP, ClinVar, 1000Gemones

• Short variant detection: 
Matching reference genome. Variant calling procedures 

• Variations in Cancer
Cancer data resources, gene and variant classification

• Short variant annotation and interpretation:
Annotation and prediction methods



Why genetic variants?
Genetic variation is fundamental to the evolution of all species and is what 
makes us individuals. 

• To study the differences within and between populations, to understand the 
mechanism of adaptation, speciation, and the population structure.

• To characterize the relationship between genotype and phenotype.

• Design new diagnostic protocols and therapeutic strategies.



Personalized medicine
Genotype test and exam sequencing, is cheap, and soon full genome sequencing 
cost will drop to $1000.

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.

The future bioinformatics challenges  
for personalized medicine will be:

1. Processing Large-Scale Robust 
Genomic Data

2. Interpretation of the Functional 
Effect and the Impact of Genomic 
Variation

3. Integrating Systems and Data to 
Capture Complexity

4. Making it all clinically relevant



Single Nucleotide Variants
Single Nucleotide Variants (SNVs) 
is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the 
genome differs between members of the species. 

It is used to refer to Polymorphisms when the population frequency is ≥ 1% 

SNVs occur at any position and can be 
classified on the base of their locations. 


Coding SNVs can be subdivided into two 
groups: 
 


Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid  

Non-synonymous or Single Amino Acid Variants 
(SAVs): when single base substitutions cause a 
change in the resultant amino acid. 

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov


Sequence, Structure & Function
Genomic variants in sequence motifs could affect protein function. 

Mutation S362A of P53 affect the interaction with hydrolase USP7 and the 
deubiquitination of the protein.  

Nonsynonymous variants responsible 
for protein structural changes and 
cause loss of stability of the folded 
protein.

Mutation R411L removes the salt 
bridge stabilizing the structure of the 
IVD dehydrogenase. R411

Transcription  
activation

Interaction 
with DNA

Interaction 
with USP7

Interaction  
with WWOX

S362

Interaction 
with SH3



 Variants and drug response
Pharmacogenomics aims at understanding how genetic variants influence drug 
efficacy and toxicity.

Pharmacokinetics variants: drug 
undergoes to bioinactivation via metabolic 
pathway. When the functionality of the 
pathway is compromised, a much higher 
concentrations of parent drug will 
accumulate.

Pharmacodynamics variants have 
an effect on the drug-receptor 
interactions and concentration. 
These variations have a directly 
impact on the dose-response 
relationships.

https://www.pharmgkb.org/ 

Warfarin and CYP2C9. Warfarin and VKORC1 

https://www.pharmgkb.org/


Variation data resources 



Variant data growth 
Single Nucleotide Variants (SNVs) are the most common type of genetic variations in 
human accounting for more than 90% of sequence differences (1000 Genome Project 
Consortium, 2012).
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SNVs and SAVs databases

http://www.ncbi.nlm.nih.gov/

dbSNP (2016/2017) @ NCBI

Single Nucleotide Variants 

Homo sapiens        135,967,291 

Bos taurus           39,722,628 

Mus musculus              16,396,141

http://www.expasy.ch/swissvar/

SwissVar (Jun 2017) @ ExPASy
Single Amino acid Variants 

Homo sapiens             76,608 

Disease                             29,529 

Polymorphisms                  39,779

Jun 2017

http://www.expasy.ch/swissvar/


Non-coding variants

https://www.ncbi.nlm.nih.gov/clinvar/ Aug 2017

Clinvar reports the clinical significance of ~280,000 short variants. 
Only 32,305 are annotated as Pathogenic and 17,180 as Benign.


Out of them ~89,000 variants are outside exotic regions, 3,164 are 
Pathogenic and 9,684 Benign.



1000 Genomes
The 1000 Genomes Project aims to create the largest public catalogue of 
human variations and genotype data. Last versione released the genotype 
of ~2,500 individuals.  

variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).
We also used local realignment to generate candidate alternative

haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineatedwith base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423
per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4Mb, we identified 12,758
SNPs and 96 indels.
Experimental validation was used to estimate and control the FDR

fornovel variants (SupplementaryTable 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).
Variation detected by the project is not evenly distributed across

the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25%were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4%were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb
(85%)

2.41 Gb
(85%)

2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.
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1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.



Functional variants    
An accurate estimation of the number of functional variants is given by 
the number of variants at conserved positions (GERP score >2).

The excess of deleterious rare variants is a significant fraction of the 
detected variants in the same class.

1000 Genomes Project Consortium (2012). Nature. 491: 56-63.

ratios of non-synonymous to synonymous variants in different fre-
quency ranges. The non-synonymous to synonymous ratio among
rare (,0.5%) variants is typically in the range 1–2, and among com-
mon variants in the range 0.5–1.5, suggesting that 25–50% of rare
non-synonymous variants are deleterious. However, the segregating
rare load among gene groups in KEGG pathways20 varies substantially
(Supplementary Fig. 11a and Supplementary Table 13). Certain
groups (for example, those involving extracellular matrix (ECM)–
receptor interactions, DNA replication and the pentose phosphate
pathway) show a substantial excess of rare coding mutations, which
is only weakly correlated with the average degree of evolutionary
conservation. Pathways and processes showing an excess of rare func-
tional variants vary between continents (Supplementary Fig. 11b).
Moreover, the excess of rare non-synonymous variants is typically
higher in populations of European and East Asian ancestry (for
example, the ECM–receptor interaction pathway load is strongest
in European populations). Other groups of genes (such as those asso-
ciated with allograft rejection) have a high non-synonymous to syno-
nymous ratio in common variants, potentially indicating the effects of
positive selection.

Genome-wide data provide important insights into the rates of
functional polymorphism in the non-coding genome. For example,
we consider motifs matching the consensus for the transcriptional
repressor CTCF, which has a well-characterized and highly conserved
binding motif21. Within CTCF-binding peaks experimentally defined
by chromatin-immunoprecipitation sequencing (ChIP-seq), the average
levels of conservation within the motif are comparable to third codon
positions, whereas there is no conservation outside peaks (Fig. 4b).
Within peaks, levels of genetic diversity are typically reduced 25–75%,
depending on the position in the motif (Fig. 4b). Unexpectedly, the
reduction in diversity at some degenerate positions, for example, at
position 8 in the motif, is as great as that at non-degenerate positions,
suggesting that motif degeneracy may not have a simple relationship
with functional importance. Variants within peaks show a weak but
consistent excess of rare variation (proportion with frequency ,0.5%
is 61% within peaks compared with 58% outside peaks; Supplementary
Fig. 12), supporting the hypothesis that regulatory sequences contain
substantial amounts of weakly deleterious variation.

Purifying selection can also affect population differentiation if its
strength and efficacy vary among populations. Although the magnitude
of the effect is weak, non-synonymous variants consistently show

greater levels of population differentiation than synonymous variants,
for variants of frequencies of less than 10% (Supplementary Fig. 13).

Uses of 1000 Genomes Project data in medical genetics
Data from the 1000 Genomes Project are widely used to screen variants
discovered in exome data from individuals with genetic disorders22 and
in cancer genome projects23. The enhanced catalogue presented here
improves the power of such screening. Moreover, it provides a ‘null
expectation’ for the number of rare, low-frequency and common
variants with different functional consequences typically found in ran-
domly sampled individuals from different populations.

Estimates of the overall numbers of variants with different sequence
consequences are comparable to previous values1,20–22 (Supplementary
Table 14). However, only a fraction of these are likely to be functionally
relevant. A more accurate picture of the number of functional variants
is given by the number of variants segregating at conserved posi-
tions (here defined as sites with a genomic evolutionary rate profiling
(GERP)19 conservation score of .2), or where the function (for example,
stop-gain variants) is strong and independent of conservation (Table 2).
We find that individuals typically carry more than 2,500 non-
synonymous variants at conserved positions, 20–40 variants identified
as damaging24 at conserved sites and about 150 loss-of-function (LOF)
variants (stop-gains, frameshift indels in coding sequence and disrup-
tions to essential splice sites). However, most of these are common
(.5%) or low-frequency (0.5–5%), such that the numbers of rare
(,0.5%) variants in these categories (which might be considered as
pathological candidates) are much lower; 130–400 non-synonymous
variants per individual, 10–20 LOF variants, 2–5 damaging mutations,
and 1–2 variants identified previously from cancer genome sequencing25.
By comparison with synonymous variants, we can estimate the excess
of rare variants; those mutations that are sufficiently deleterious that
they will never reach high frequency. We estimate that individuals
carry an excess of 76–190 rare deleterious non-synonymous variants
and up to 20 LOF and disease-associated variants. Interestingly,
the overall excess of low-frequency variants is similar to that of rare
variants (Table 2). Because many variants contributing to disease risk
are likely to be segregating at low frequency, we recommend that
variant frequency be considered when using the resource to identify
pathological candidates.

The combination of variation data with information about regulatory
function13 can potentially improve the power to detect pathological

Table 2 | Per-individual variant load at conserved sites
Variant type Number of derived variant sites per individual Excess rare deleterious Excess low-frequency deleterious

Derived allele frequency across sample

,0.5% 0.5–5% .5%

All sites 30–150 K 120–680 K 3.6–3.9 M ND ND
Synonymous* 29–120 82–420 1.3–1.4 K ND ND
Non-synonymous* 130–400 240–910 2.3–2.7 K 76–190{ 77-130{
Stop-gain* 3.9–10 5.3–19 24–28 3.4–7.5{ 3.8–11{
Stop-loss 1.0–1.2 1.0–1.9 2.1–2.8 0.81–1.1{ 0.80–1.0{
HGMD-DM* 2.5–5.1 4.8–17 11–18 1.6–4.7{ 3.8–12{
COSMIC* 1.3–2.0 1.8–5.1 5.2–10 0.93–1.6{ 1.3–2.0{
Indel frameshift 1.0–1.3 11–24 60–66 ND1 3.2–11{
Indel non-frameshift 2.1–2.3 9.5–24 67–71 ND1 0–0.73{
Splice site donor 1.7–3.6 2.4–7.2 2.6–5.2 1.6–3.3{ 3.1–6.2{
Splice site acceptor 1.5–2.9 1.5–4.0 2.1–4.6 1.4–2.6{ 1.2–3.3{
UTR* 120–430 300–1,400 3.5–4.0 K 0–350{ 0–1.2 K{
Non-coding RNA* 3.9–17 14–70 180–200 0.62–2.6{ 3.4–13{
Motif gain in TF peak* 4.7–14 23–59 170–180 0–2.6{ 3.8–15{
Motif loss in TF peak* 18–69 71–300 580–650 7.7–22{ 37–110{
Other conserved* 2.0–9.9 K 7.1–39 K 120–130 K ND ND
Total conserved 2.3–11 K 7.7–42 K 130–150 K 150–510 250–1.3 K

Only sites in which ancestral state can be assigned with high confidence are reported. The ranges reported are across populations. COSMIC, Catalogue of Somatic Mutations in Cancer; HGMD-DM, Human Gene
Mutation Database (HGMD) disease-causing mutations; TF, transcription factor; ND, not determined.
*Sites with GERP .2
{Using synonymous sites as a baseline.
{Using ’other conserved’ as a baseline.
1 Rare indels were filtered in phase I.
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Short variant detection



Variant detection can be performed using several tools. Some method are 
specific for particular types of variant. 

Variant detection

Nature Reviews | Genetics

Example tools

Example tools

Level II
Population-based analysis of
genetic alterations and
KFGPVKȮECVKQP�QH�UKIPKȮECPV
alterations, genes, pathways
and networks

Level I
Annotation and analysis
of individual genetic
alterations

SNVs and indels
Discover SNVs and small
indels using WGS, exome
sequencing and RNA-seq data

CNAs, SVs and gene fusions
Uncover large-scale CNAs,
SVs and gene fusions using
WGS and RNA-seq data

Variant detection

Variant annotation and interpretation

VEP

SIFT

CHASM

PARADIGM

PolyPhen2

502Gȭ

ANNOVAR

MutationAssessor

ActiveDriver

CREST

GATK

GASV-pro

deFuse

StrelkaPindel

VarScan

JointSNVMix

SomaticSniper

BassovacMuTect

Genome STRiP

BreakDancer

ChimeraScan

Hydra

TIGRA

Analysis

Tumour Tumour sectioning

Single cell

...TCATAGTA...

...TCATAGTA...

Tumour sample

Sampling Sequencing

Normal sample

Dendrix

MuSiC

Oncodrive

HotNet

MutSig

TieDIE

PathScan

MEMo

Metastasis

ba

Pyrosequencing
A specific sequencing- 
by-synthesis method in  
which detection is based on 
chemiluminescent signals  
from luciferin conversion.

Sequencing-by-ligation
A sequencing method based 
on the mismatch sensitivity  
of DNA ligase to detect 
nucleotides.

Sequencing-by-synthesis
A sequencing method that 
uses sequential polymerization 
of nucleotides to a template,  
in which each incorporation is 
inferred by an imaging process, 
usually from a fluorescent dye 
attached to the added 
nucleotide.

Driver mutations
Somatic mutations that have 
causal roles in initiation, 
progression, metastasis or 
recurrence of cancer.

Significantly mutated genes
(SMGs). Genes with rates of 
somatic mutations that are 
higher than the random 
background rates, which 
suggests a role in tumour 
initiation or progression.

state-of-the-art data generation in cancer genomics, cur-
rent methods for pre-processing the raw data to detect 
signals, and higher-level analyses of individuals (Level I) 
and cohorts (Level II) for biomedical research and clini-
cal applications (FIG. 1). Moreover, we remark on some 
important open problems and speculate on the future of 
this research field in the next several years.

Sequencing strategies
Sequencing is a broad term for interrogating a range of 
molecular entities, including an entire static genome 
(WGS)5, strictly the coding genomic regions (exome 
sequencing)6, the transcriptome (RNA-seq)7 as a ‘snap-
shot’ of the mRNAs present at a given time and tissue 
location, genomic methylation patterns8 and peptides 
(protein sequence). As coding genomic sequences con-
stitute only 1–2% of the genome, the cost for exome 

sequencing is still appreciably lower than for WGS. 
However, such differences are gradually becoming less 
important, as technological improvements continue to 
decrease overall sequencing costs. Despite its higher 
cost, WGS might be preferable, as it provides informa-
tion on structural and non-coding variants, which can-
not be captured from exome-only data. WGS data are 
therefore considered to be the unbiased ‘gold standard’ 
(REF. 9), and the field is likely to shift increasingly towards 
this form of data.

Traditional sequencing analyses. For an individual 
patient with cancer, the immediate goal of any sequenc-
ing procedure is to identify germline and somatic variants 
that are linked to the cancer phenotype. Typically, tumour 
and normal tissue samples are collected, sequenced, 
aligned to the reference genome and compared against 

Figure 1 | Sample procurement, sequencing and analysis 
roadmap. a|̂ �/QUV�ECPEGT�IGPQOKE�KPXGUVKICVKQPU�
sequence the genome of a tumour sample from a primary 
or metastatic lesion, starting with a nonspecific ‘global’ 
sample pooled from a biopsy specimen or resection. As the 
spatial distribution of any resident subclones is not known 
C|RTKQTK��KV�YKNN�DGEQOG�KPETGCUKPIN[�EQOOQP�VQ�UGSWGPEG�
specific regions from a tumour section separately. In the 
limit, single-cell sequencing can also be carried out on 
nuclei sorted by flow cytometry to assess cellular diversity. 
b|̂ �6WOQWT�CPF�CFLCEGPV�JGCNVJ[�VKUUWG�UCORNGU�CTG�
sequenced using high-throughput methods, such as 
whole-genome sequencing (WGS), exome sequencing and 
RNA sequencing (RNA-seq). After alignment, a range of 
detection tools identifies both small alterations (such  
as single-nucleotide variants (SNVs), and insertions  
and deletions (indels)) and large alterations (such as 
copy-number aberrations (CNAs), structural variants (SVs) 
and gene fusions), which are then annotated and analysed 
individually (Level I) — for example, for likely functional 
implications — and collectively (Level II) — for example, to 
KFGPVKH[�TGNGXCPV�IGPG�RCVJYC[U�CPF�PGVYQTMU��%*#5/��
CancerSpecific High-throughput Annotation of Somatic 
/WVCVKQPU��%4'56��ENKRRKPI�TGXGCNU�UVTWEVWTG��&GPFTKZ��
&G|0QXQ�&TKXGT�'ZENWUKXKV[��)#58��IGQOGVTKE�CPCN[UKU�QH�
UVTWEVWTCN�XCTKCPVU��)#6-��)GPQOG�#PCN[UKU�6QQNMKV��
)GPQOG�564K2��)GPQOG�564WEVWTG�+P�2QRWNCVKQPU��/'/Q��
/WVWCN�'ZENWUKXKV[�/QFWNGU�KP�ECPEGT��5+(6��UQTVKPI�
KPVQNGTCPV�HTQO�VQNGTCPV��502��UKPING�PWENGQVKFG�
RQN[OQTRJKUO��6KG&+'��6KGF�&KHHWUKQP�6JTQWIJ�+PVGTCEVKPI�
'XGPVU��6+)4#��VCTIGVGF�KVGTCVKXG�ITCRJ�TQWVKPI�CUUGODNGT��
8'2��8CTKCPV�'HHGEV�2TGFKEVQT�
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How data looks like?
Variant Calling File (VCF) with germline and somatic variants

##fileformat=VCFv4.1 
##tcgaversion=1.1
##reference=<ID=hg19,source=.>
##phasing=none
##geneAnno=none
##INFO=<ID=VT,Number=1,Type=String,Description="Variant type, can be SNP, INS or DEL">
##INFO=<ID=VLS,Number=1,Type=Integer,Description="Final validation status relative to non-adjacent Normal, ......”>
##FILTER=<ID=CA,Description="Fail Carnac (Tumor and normal coverage, tumor variant count, mapping quality, ......”>
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read depth at this position in the sample">
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Depth of reads supporting alleles 0/1/2/3...">
##FORMAT=<ID=BQ,Number=.,Type=Integer,Description="Average base quality for reads supporting alleles">
##FORMAT=<ID=SS,Number=1,Type=Integer,Description="Variant status relative to non-adjacent Normal,0=wildtype, ......">
##FORMAT=<ID=SSC,Number=1,Type=Integer,Description="Somatic score between 0 and 255">
##FORMAT=<ID=MQ60,Number=1,Type=Integer,Description="Number of reads (mapping quality=60) supporting variant">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL   PRIMARY
1 10048 . C CCT . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:.:0:.:0   0/1:32:.,2:.:2:.:0
1 10078 . CT C . CA VT=DEL;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:.:0:.:0   0/1:13:.,2:.:2:.:0
1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:.:0:.:0   0/1:22:.,2:.:2:.:0 
. . . . .
. . . . .
1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81  0/1:210:.,113:24:1:.:100
. . . . .
. . . . .
1 1991007 . G T . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:222:.,1:2:0:.:1   0/1:88:.,41:25:2:50:34
. . . . .



The probability of observing a particular variant by chance can be calculated using different 
procedure.

VarScan2 uses Fisher’s exact test where the background distribution correspond  all reads 
mapping the reference allele. 

Variant significance

CHROM: chr17    
POS: 560603  
ID: .
REF: A
ALT: G
QUAL: .
FILTER: PASS
INFO: ADP=94;WT=0;HET=1;HOM=0;NC=0
FORMAT: ADP=94;WT=0;HET=1;HOM=0;NC=0
FORMAT: GT:GQ:SDP:DP:RD:AD:FREQ:PVAL:RBQ:ABQ:RDF:RDR:ADF:ADR
SAMPLE: 0/1:194:94:94:43:51:54.26%:3.3469E-20:40:40:14:29:13:38

A G

Data 43 51

Background 94 0

Contingency Table



samtools view
Usage: samtools tview [options] <aln.bam> [ref.fasta]

samtools tview  -p chr17:7674200  bam/tumor_chr17.bam hg38/GRCh38.d1.vd1.fa



VarScan2 germline call

mpileup2snp

STEP1

samtools mpileup [options] in1.bam ……

samtools mpileup -B -q 1 -f 
   hg38/GRCh38.d1.vd1.fa  bam/normal_chr17.bam   
   >normal_chr17.mpileup

STEP 2

java -jar VarScan.v2.4.1.jar  
 mpileup2snp mpileupfile [options]

java -jar VarScan.v2.4.1.jar  mpileup2snp 
  normal_chr17.mpileup --min-coverage 10 
  —min-var-freq 0.2 --p-value 0.05 
  --output-vcf 1 > normal_chr17.snp.vcf

Koboldt et al. (2013). Curr Protoc Bioinformatics.



vcftools
Powerful tools for manipulating the variant call format (VCF) and binary variant call format (BCF)

Select a chromosome region

vcftools --vcf  1kgenomes/tp53_1kgenomes.vcf --chr 17 
       --from-bp 7571752 --to-bp 7590868 --recode --stdout

Select variant with a minimum depth

vcftools --vcf 1kgenomes/tp53_1kgenomes.vcf --minDP 4 --recode 
—stdout

Select genotype of specific individuals

vcftools --vcf  1kgenomes/tp53_1kgenomes.vcf --indv HG00110 
--indv HG00113 --recode --stout

Compare vcf files

vcftools --vcf 1kgenomes/tp53_1kgenomes.vcf --diff 
         1kgenomes/tp53_1kgenomes_ends.vcf  --diff-site  --stdout



Variations in Cancer



Hallmarks of cancer

Hanahan and Weinberg (2011) Cell, 144:646

The six hallmarks of cancer - distinctive and complementary capabilities that 
enable tumor growth and metastatic dissemination.



Cancer is complex disorder characterized by high level of mutation rate.  

The complexity of cancer

Mutations can be classified in germline and somatic whether they are inherited 
from parents or the result of error in DNA replication. 


 
Another classification is between driver and passenger mutations whether they 
provide selective advantage with respect to normal cells increasing their 
proliferation rate or not.




Oncogene vs Suppressor
Oncogenes have highly recurrent mutations, tumor suppressors have sparse variants. 

Vogelstein et al. (2013) Science , 339:1546



Main challenges

• Detection of recurrent somatic mutations and cancer driver genes; 


• Prediction of driver variants and their functional impact; 


• Estimate the impact of multiple variants at network and pathway level; 


• Differentiate subclonal populations and their variation pattern.   

Computational methods for cancer genome interpretation have been developed to 
address the following issues:



The TCGA portal
The Cancer Genome Atalas Consortium 

TCGA (http://cancergenome.nih.gov/)

• 36 cancer types 

• BAM files available through the CGHub portal



The ICGC data portal
The International Cancer Genome Consortium

• 17,570 cancer patients

• 76 cancer projects in 21 primary sites

• more than 63 million simple somatic mutations. 

ICGC (https://dcc.icgc.org/) 



Mutational landscape
The distribution of somatic variants varies significantly across cancer types 



Driver vs Passenger  
Number of recurrent mutations decrease exponentially. 


On average a small fraction of variants a present in the majority of the samples.


Selecting mutations that are repeated at least twice we filter out ~98% mutations 
and are still able to recover ~96% of the patients 

Tian R, Basu M, Capriotti E.(2015) BMC Genomics. 16 (Suppl. 8): S7.
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Sample purity
Impurity in the sample purity reduce the ability to detect variants

specialized methods [28-31] have been developed to
quantify the extent of heterogeneity in a sample. The
simplest form of intra-tumor heterogeneity is admixture
by normal cells. The tumor purity of a sample is defined
as the fraction of cells in the sample that are cancerous.
A read from a tumor sample represents a sequence in
the cell, or subpopulation of cells, from which the read
was derived. Thus, lower tumor purity results in a reduc-
tion in the number of sequence reads derived from the
cancerous cells, and thus a reduction in the signal that
can be used to detect somatic mutations (Figure 1b).
Tumor purity is an important parameter in the detection

of somatic mutations. To obtain reasonable sensitivity and
specificity, methods to predict somatic aberrations must
utilize, either implicitly or explicitly, an estimate of

tumor purity. The VarScan 2 program [24] for calling
somatic SNVs and indels allows a user to provide an
estimate of tumor purity in order to calibrate the ex-
pected number of reads containing a somatic mutation
at a single locus. Conversely, methods such as MuTect
[22] and Strelka [23] explicitly model tumor and nor-
mal allele frequencies using observed data to calibrate
sensitivity. As a result, MuTect and Strelka may pro-
vide improved sensitivity for detecting mutations that
occur in lower frequencies, especially when tumor pur-
ity is unknown a priori. The performance of these and
other somatic mutation-calling algorithms depends on
accurate estimates of tumor purity.
Standard methods for estimating tumor purity involve

visual inspection by a pathologist or automated analysis

Read Heterozygous
germline SNV

Heterozygous
somatic SNV

Sequencing
error

100% Tumor purity

Reference genome

60% Tumor purity

Reference genome

(a)

(b)

Key:

Figure 1 Somatic mutation detection in tumor samples. DNA-sequence reads from a tumor sample are aligned to a reference genome
(shown in gray). Single-nucleotide differences between reads and the reference genome indicate germline single-nucleotide variants (SNVs; green
circles), somatic SNVs (red circles), or sequencing errors (black diamonds). (a) In a pure tumor sample, a location containing mismatches or single
nucleotide substitutions in approximately half of the reads covering the location indicates a heterozygous germline SNV or a heterozygous somatic
SNV - assuming that there is no copy number aberration at the locus. Algorithms for detecting SNVs distinguish true SNVs from sequencing errors by
requiring multiple reads with the same single-letter substitution to be aligned at the position (gray boxes). (b) As tumor purity decreases, the fraction
of reads containing somatic mutations decreases: cancerous and normal cells, and the reads originating from each, are shown in blue and orange,
respectively. The number of reads reporting a somatic mutation decreases with tumor purity, diminishing the signal to distinguish true somatic
mutations from sequencing errors. In this example, only one heterozygous somatic SNV and one hetererozygous germline SNV are detected
(gray boxes) as the mutation in the middle set of aligned reads is not distinguishable from sequencing errors.

Raphael et al. Genome Medicine 2014, 6:5 Page 3 of 17
http://genomemedicine.com/content/6/1/5

Raphael et al. (2014) Genome Medicine, 6:5



On average tumor samples have ~150 more rare missense variants and mutated genes

Clonal evolution

cancer types over the next several years. Furthermore, 
efforts by the Cancer Cell Line Encyclopedia154 and 
Genomics of Drugs Sensitivity in Cancer will help to 
establish genomic determinants of resistance or sensi-
tivity to drugs. The information and knowledge that 
will be gained from such projects are expected to have 
enormous implications both for understanding cancer 
broadly and for diagnosing and treating tumours at 
the individual patient level. This will be a tangible step 
towards personalized medicine.

Widespread clinical application of cancer genome 
and transcriptome sequencing is a certainty, although 
the timing remains unclear because of several remain-
ing issues related to both cost and reliability. First, the 
‘data spectrum’ and associated analysis tools are not 
yet complete. A substantial portion of driver events in 
cancer are DNA or RNA alterations that affect protein 
expression, but proteomics has not yet achieved the 
high-throughput rates and sample census of genomic 
sequencing. In our view, proteomic data are increas-
ingly important in ascertaining driver genes and path-
ways, especially in terms of winnowing false positives 
from the large lists of hypotheses generated by path-
way, network and SMG algorithms. However, it is clear 
that the proteomic gap is starting to close. For example, 
the Clinical Proteomic Tumor Analysis Consortium 
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(CPTAC) launched by the US National Cancer Institute 
(NCI) will further many goals, including the charac-
terization of tumour protein inventories, the integration 
of genomics with proteomics and the development of 
biomarker assays for high-priority proteins. Associated 
bioinformatic tools will also be further developed. This 
will be an increasingly fruitful area of research. The sec-
ond factor is the reality of cost. The cost of sequencing 
an individual’s genome has decreased by ~5 orders of 
magnitude from ~1 billion dollars for the first human 
genome to around $10,000 now. Technological develop-
ment continues apace, but the overall cost for an entire 
‘package’ (that is, DNA and RNA sequencing, proteom-
ics and companion systematic analysis) is likely to have 
to decrease by yet another order of magnitude before 
sequencing can become a routine clinical test. In addi-
tion, there will probably be some form of certification 
process for analysis software. There have even been a 
few early clinical successes, such as the case of Lukas 
Wartman, whose comprehensive genome, exome and 
RNA analysis implicated FLT3 overexpression in his 
particular form of leukaemia155. This analysis led to the 
decision to administer Sutent, which is a tyrosine kinase 
inhibitor targeting FLT3 expression that was approved 
by the US Food and Drug Administration (FDA). This 
quickly put Wartman’s disease into remission that 

Figure 4 | A conceptual example of clonal evolution model and 
clonality analyses. a|^�6JG�HQWPFKPI�ENQPG�
[GNNQY��RGTUKUVU�FWTKPI�VJG�
EQWTUG�QH�VJG�FKUGCUG��#PQVJGT�ENQPG�
ITGGP��VJCV�KU�RTGUGPV�CV�VKOG�RQKPV|��

faces extinction before time point 2, but new subclones (blue and orange) 
emerge during disease progression. b|̂ �6JG�5EK%NQPG�CNIQTKVJO�FGVGEVU�VJG�
presence of 3 mutation clusters at time point 3.
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Recurrent variations

Raphael et al. Genome Medicine 2014, 6:5

Recurrent mutations found in more 
samples than expected are good 
candidates for driver mutations.


To identify such recurrent mutations, a 
statistical test is performed which usually 
collapses all the non-synonymous 
mutations in a gene.


Identification of recurrent mutations in 
predefined groups of genes such as 
pathways and protein-protein interaction 
networks and  de novo identification of 
combinations, without relying on a priori 
definition.



VarScan2 somatic call (I)
STEP 1

samtools mpileup [options] in1.bam in

samtools mpileup -B -q 1 -f 
   hg38/GRCh38.d1.vd1.fa  bam/normal_chr17.bam   
   bam/tumor_chr17.bam

 >normal_tumor_chr17.mpileup

STEP 2

java -jar VarScan.v2.4.1.jar  
 somatic mpileupfile outfile.mpileup [options]

java -jar VarScan.v2.4.1.jar somatic  
normal_tumor.mpileup normal_tumor.vcf   
--output-vcf 1 --min-coverage 3  
--min-var-freq 0.08 --p-value 0.10
--somatic-p-value 0.05 
--strand-filter 0 --mpileup 1



VarScan2 somatic call (II)
STEP 3 

java -jar VarScan.v2.4.1.jar processSomatic 
variant_file

java -jar VarScan.v2.4.1.jar processSomatic 
normal_tumor.vcf.snp

STEP 4

java -jar VarScan.v2.4.1.jar somaticFilter  
somatic.snp.hc —indel-file
somatic.indel.hc --output-file 
somatic.snp.hc.filter

java -jar VarScan.v2.4.1.jar somaticFilter 
normal_tumor.vcf.snp.Somatic.hc
--indel-file 
normal_tumor.vcf.indel.Somatic.hc 
--output-file 
normal_tumor.vcf.Somatic.hc.filter



The probability of observing a particular somatic variant by chance can be calculated using 
different procedure.

VarScan2 uses Fisher’s exact test where the background distribution corresponding  to 
threads in the normal sample. 

Somatic variant significance

CHROM: chr17    
POS: 7674221  
ID: .
REF: G
ALT: A
QUAL: .
FILTER: PASS
INFO: DP=102;SOMATIC;SS=2;SSC=58;GPV=1E0;SPV=1.4006E-6
FORMAT: ADP=94;WT=0;HET=1;HOM=0;NC=0
FORMAT: GT:GQ:DP:RD:AD:FREQ:DP4
NORMAL: 0/0:.:47:47:0:0%:31,16,0,0
TUMOR: 0/1:.:55:36:19:34.55%:26,10,12,7

A G

TUMOR 36 19

NORMAL 47 0

Contingency Table



A survey of four somatic variant callers revealed that only a little fraction of detected 
variants are in common among methods

Variant callers survey

www.nature.com/scientificreports/

4Scientific RepoRts | 6:36540 | DOI: 10.1038/srep36540

with very low depth of reads in tumor samples or low variant allele proportions. Although of limited absolute 
amount, the SNV candidates produced by Cake proved to be with higher likely true-positives and lower likely 
false-positives.

Figure 2. The relationship of mutations detected by four sSNV callers. Venn diagrams of mutations based 
on WES (A) and UDT-Seq (B) data illustrate the overlaps between mutation candidate sets. Scatter-plot 
of mutation candidate sets from each sample based on WES (C) and UDT-Seq (D) data demonstrate the 
correlation between size of mutations detected by different callers: each dot in the upper panel represents the 
number of mutations detected from each tumor-normal tissue pair, and the lower panels display the Pearson 
correlation coefficients between the two callers with font size proportional to the correlations.

Whole Exome Sequencing or WES (32 samples)
Method Varscan SomaticSniper Strelka MuTect2
Total variants 7957 9826 6441 4952
HAAIC variants 2156 (27.1%) 2319 (23.6%) 380 (5.9%) 228 (4.6%)
Variants with strand biasa 286 (3.6%) 20 (0.2%) 39 (0.6%) 10 (0.2%)
Variants with > 2 observations in controls 4042 (50.8%) 7006 (71.3%) 715 (11.1%) 560(11.3%)
Variants present in dbSNP 3724 (46.8%) 6976 (71.0%) 1024 (15.9%) 738 (14.9%)
Variants present in COSMICb 374 (4.7%) 452 (4.6%) 309 (4.8%) 352 (7.1%)

Targeted sequencing (51 samples)
Total variants 971 1699 2128 1295
HAAIC variants 179 (18.4%) 227 (13.4%) 298 (14.0%) 191 (14.7%)
Variants with strand biasa 43 (4.4%) 12 (0.7%) 62 (2.9%) 13 (1%)
Variants with > 2 observations in controls 415 (42.7%) 1139 (67.0%) 811 (38.1%) 480 (37.1%)
Variants present in dbSNP 396 (40.8%) 1151 (67.7) 864 (40.6%) 497 (38.4%)
Variants present in COSMICb 58 (6.0%) 91 (5.4%) 174 (8.2%) 171 (13.2%)

Table 1.  Multiple features used for gauging call sets produced by four sSNV callers. aPhred-scaled 
p-value >  30. bVariants present in both COSMIC and dbSNP are considered only with COSMIC entries since 
dbSNP holds a small fraction of somatic mutation.

UDT-SeqWES-Seq

Cai et al (2016). Scientific Reports 6,: 36540 .



Short variant annotation 
and interpretation



Annotation define the effect of the variants and its location. 

Variant interpretation consists in predicting its functional/phenotypic effect

Annotation and interpretation

Nature Reviews | Genetics

Example tools

Example tools

Level II
Population-based analysis of
genetic alterations and
KFGPVKȮECVKQP�QH�UKIPKȮECPV
alterations, genes, pathways
and networks

Level I
Annotation and analysis
of individual genetic
alterations

SNVs and indels
Discover SNVs and small
indels using WGS, exome
sequencing and RNA-seq data

CNAs, SVs and gene fusions
Uncover large-scale CNAs,
SVs and gene fusions using
WGS and RNA-seq data

Variant detection

Variant annotation and interpretation

VEP

SIFT

CHASM

PARADIGM

PolyPhen2

502Gȭ

ANNOVAR

MutationAssessor

ActiveDriver

CREST

GATK

GASV-pro

deFuse

StrelkaPindel

VarScan

JointSNVMix

SomaticSniper

BassovacMuTect

Genome STRiP

BreakDancer

ChimeraScan

Hydra

TIGRA

Analysis

Tumour Tumour sectioning

Single cell

...TCATAGTA...

...TCATAGTA...

Tumour sample

Sampling Sequencing

Normal sample

Dendrix

MuSiC

Oncodrive

HotNet

MutSig

TieDIE

PathScan

MEMo

Metastasis

ba

Pyrosequencing
A specific sequencing- 
by-synthesis method in  
which detection is based on 
chemiluminescent signals  
from luciferin conversion.

Sequencing-by-ligation
A sequencing method based 
on the mismatch sensitivity  
of DNA ligase to detect 
nucleotides.

Sequencing-by-synthesis
A sequencing method that 
uses sequential polymerization 
of nucleotides to a template,  
in which each incorporation is 
inferred by an imaging process, 
usually from a fluorescent dye 
attached to the added 
nucleotide.

Driver mutations
Somatic mutations that have 
causal roles in initiation, 
progression, metastasis or 
recurrence of cancer.

Significantly mutated genes
(SMGs). Genes with rates of 
somatic mutations that are 
higher than the random 
background rates, which 
suggests a role in tumour 
initiation or progression.

state-of-the-art data generation in cancer genomics, cur-
rent methods for pre-processing the raw data to detect 
signals, and higher-level analyses of individuals (Level I) 
and cohorts (Level II) for biomedical research and clini-
cal applications (FIG. 1). Moreover, we remark on some 
important open problems and speculate on the future of 
this research field in the next several years.

Sequencing strategies
Sequencing is a broad term for interrogating a range of 
molecular entities, including an entire static genome 
(WGS)5, strictly the coding genomic regions (exome 
sequencing)6, the transcriptome (RNA-seq)7 as a ‘snap-
shot’ of the mRNAs present at a given time and tissue 
location, genomic methylation patterns8 and peptides 
(protein sequence). As coding genomic sequences con-
stitute only 1–2% of the genome, the cost for exome 

sequencing is still appreciably lower than for WGS. 
However, such differences are gradually becoming less 
important, as technological improvements continue to 
decrease overall sequencing costs. Despite its higher 
cost, WGS might be preferable, as it provides informa-
tion on structural and non-coding variants, which can-
not be captured from exome-only data. WGS data are 
therefore considered to be the unbiased ‘gold standard’ 
(REF. 9), and the field is likely to shift increasingly towards 
this form of data.

Traditional sequencing analyses. For an individual 
patient with cancer, the immediate goal of any sequenc-
ing procedure is to identify germline and somatic variants 
that are linked to the cancer phenotype. Typically, tumour 
and normal tissue samples are collected, sequenced, 
aligned to the reference genome and compared against 

Figure 1 | Sample procurement, sequencing and analysis 
roadmap. a|̂ �/QUV�ECPEGT�IGPQOKE�KPXGUVKICVKQPU�
sequence the genome of a tumour sample from a primary 
or metastatic lesion, starting with a nonspecific ‘global’ 
sample pooled from a biopsy specimen or resection. As the 
spatial distribution of any resident subclones is not known 
C|RTKQTK��KV�YKNN�DGEQOG�KPETGCUKPIN[�EQOOQP�VQ�UGSWGPEG�
specific regions from a tumour section separately. In the 
limit, single-cell sequencing can also be carried out on 
nuclei sorted by flow cytometry to assess cellular diversity. 
b|̂ �6WOQWT�CPF�CFLCEGPV�JGCNVJ[�VKUUWG�UCORNGU�CTG�
sequenced using high-throughput methods, such as 
whole-genome sequencing (WGS), exome sequencing and 
RNA sequencing (RNA-seq). After alignment, a range of 
detection tools identifies both small alterations (such  
as single-nucleotide variants (SNVs), and insertions  
and deletions (indels)) and large alterations (such as 
copy-number aberrations (CNAs), structural variants (SVs) 
and gene fusions), which are then annotated and analysed 
individually (Level I) — for example, for likely functional 
implications — and collectively (Level II) — for example, to 
KFGPVKH[�TGNGXCPV�IGPG�RCVJYC[U�CPF�PGVYQTMU��%*#5/��
CancerSpecific High-throughput Annotation of Somatic 
/WVCVKQPU��%4'56��ENKRRKPI�TGXGCNU�UVTWEVWTG��&GPFTKZ��
&G|0QXQ�&TKXGT�'ZENWUKXKV[��)#58��IGQOGVTKE�CPCN[UKU�QH�
UVTWEVWTCN�XCTKCPVU��)#6-��)GPQOG�#PCN[UKU�6QQNMKV��
)GPQOG�564K2��)GPQOG�564WEVWTG�+P�2QRWNCVKQPU��/'/Q��
/WVWCN�'ZENWUKXKV[�/QFWNGU�KP�ECPEGT��5+(6��UQTVKPI�
KPVQNGTCPV�HTQO�VQNGTCPV��502��UKPING�PWENGQVKFG�
RQN[OQTRJKUO��6KG&+'��6KGF�&KHHWUKQP�6JTQWIJ�+PVGTCEVKPI�
'XGPVU��6+)4#��VCTIGVGF�KVGTCVKXG�ITCRJ�TQWVKPI�CUUGODNGT��
8'2��8CTKCPV�'HHGEV�2TGFKEVQT�
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Aims of variant annotation 
• Identify the gene(s) that overlaps with the variant  

•  Determine whether the variant is located in an exon 

•  Determine whether the variant is located in the coding sequence  

•  If the variant is a SNV, determine whether the encoded amino acid is 
changed, if so annotate as missense  

•  If the variant is located right before or after an exon/intron boundary, 
annotate as splicing  

• If the variant removes/adds nucleotides from the CDS, annotate as 
deletion/insertion



VEP
Variant Effect Predictor (VEP) determines the effect of your variants (SNPs, 
insertions, deletions, CNVs or structural variants) on genes, transcripts, and 
protein sequence, as well as regulatory regions. 

vep -i vcf_file -o annotated_vcf_—symbol --canonical --force 
--vcf --af  --offline --dir /nfs/vep/

vep -i normal_tumor.vcf.snp.Somatic.hc.filter 
-o normal_tumor.vcf.snp.Somatic.hc.filter.vep  --symbol 
--canonical --force --vcf --af --offline --dir /nfs/vep

Looking at the VCF output, find out what is the effect of SNV in chromosome 
17, position 7,674,221 from G to A. 



COSMIC
The Catalog of Somatic mutations in cancer (COSMIC) is the world's largest 
and most comprehensive resource for exploring the impact of somatic 
mutations in human cancer.

Mutations in position 248



Variant interpretation
Usually based learning algorithm which takes in input features 

associated to the variants and returns a probability for the variant to be 
Pathogenic or Benign

Pathogenic

Benign



                                                1 [        .         .         .         .         :         .         .         . 80 
                  bits   E-value  N 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 1 P11686          400    1e-110  1 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 2 P15783          280     3e-74  1  80.6%        MDVGSKEVLMESPPDYTAVPGGRLLIPCCPVNIKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSITGPEAQQ    
 3 P21841          276     6e-73  1  78.7%        MDMSSKEVLMESPPDYSAGPRSQFRIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPETQK    
 4 P22398          270     3e-71  1  78.2%        MDMGSKEALMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEVQQ    
 5 Q1XFL5          268     1e-70  1  80.2%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 6 UPI0000E219B8   261     1e-68  1  89.4%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 7 UPI00005A47C8   259     6e-68  1  78.2%        MDVGSKEVLIESPpdYSAAPRGRLGIPCFPSSLKRLLIIVVVIVLVVVVIVGALLMGLHMSQKHTEMVLEMSMGGPEAQQ    
 8 Q3MSM1          206     8e-52  1  83.4%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 9 Q95M82           85     3e-15  1  82.4%        -------------------------------------------------------------------VLEMSIGGPEAPQ    
10 UPI000155C160    84     4e-15  1  48.9%        --------------------------------------------------------------------------------    
11 UPI0001555957    82     1e-14  1  83.6%        ------KVRADSPPDYSVAPRGRLGIPCCPFHLKRLLIIVVVVVLIVVVVLGALLMGLHMSQKHTEM-------------    
12 B3DM51           81     4e-14  1  34.8%        ----------------------------------------------------------HMSQKHTETIFQMSL-----QD    

Conserved or not?
In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 
is mutated Threonine or Alanine

.....

.....   

                                               81          .         1         .         .         .         .         :         . 160
                  bits   E-value  N 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 1 P11686          400    1e-110  1 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 2 P15783          280     3e-74  1  80.6%        RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGTCCYIMKMAPQNIPSLEALTRKLQNF------QAKPQVPSSK    
 3 P21841(Mouse)   276     6e-73  1  78.7%        RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTYCYIMKMAPESIPSLEAFARKLQNF------RAKPSTPTSK    
 4 P22398          270     3e-71  1  78.2%        RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGTCCYLMKMAPDSIPSLEALARK---------FQANPAEPPTQ    
 5 Q1XFL5          268     1e-70  1  80.2%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQV--SVQAKPSTPTSK    
 6 UPI0000E219B8   261     1e-68  1  89.4%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALTRKVQNFQGQWKPQGERKRPGKR    
 7 UPI00005A47C8   259     6e-68  1  78.2%        RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGTCCYIMKMTPENIPSLEALTRKFQDFQV------KPAVSTSK    
 8 Q3MSM1          206     8e-52  1  83.4%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQ---------------    
 9 Q95M82           85     3e-15  1  82.4%        RLALRGRADTTATFSIGSTGIVVYDYQRLLIAYKPAPG------------------------------------------    
10 UPI000155C160    84     4e-15  1  48.9%        ---------------------------RLLIAYQPSPGATCYVTKMAPENIPSLDAITRE---FQ---SYQAKPSMPATK    
11 UPI0001555957    82     1e-14  1  83.6%        --------------------------------------------------------------------------------    
12 B3DM51           81     4e-14  1  34.8%        GSSTGAHGTGVATfgINSSASVVYDYSKLLIGTRPRPGHACYITRMDPEQVQSLETIAESV----------------LSK    



Sequence profile
The protein sequence profile is calculated running BLAST on the UniRef90 dataset and 
selecting only the hits with e-value < 10-9.  


The frequency distributions of the wild-type residues for disease-related and neutral variants 
are significantly different (KS p-value=0). 
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.



SNPs&GO input features
C48W
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Mutated residue Sequence environment
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GO:Y
Disease variant
Neutral variant

Protein
GO term

GO space
GO:X

GO:Z

GO:T

Sequence information is encoded in 2 vectors 
each one composed by 20 elements. The first 
vector encodes for the mutation and the 
second one for the sequence environment  

Protein sequence profile information derived 
from a multiple sequence alignment. It is 
encoded in a 5 elements vector corresponding 
to different features general and local features

The GO information are encoded in a 2 elements 
vector corresponding to the number unique of 
GO terms associated to the protein sequences 
and the sum of the logarithm of the total number 
of disease-related and neutral variants for each 
GO term.



SNPs&GO performance
SNPs&GO results in better performance with respect to previously developed methods. 

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFT 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Disease related  N = Neutral DB= 33672 nsSNVs

Output
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Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Sequence vs Structure
The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation 
coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.   

Q2 P[D] S[D] P[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92

http://snps.biofold.org/snps-and-go

SNPs&GO
SNPs&GO3d

http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer


CAGI experiments
The Critical Assessment of Genome Interpretation  is a community experiment to 
objectively assess computational methods for predicting the phenotypic impacts of 
genomic variation.

https://genomeinterpretation.org/



The P16 challenge
CDKN2A is the most common, high penetrance, susceptibility gene identified to 
date in familial malignant melanoma. p16INK4A  is one of the two oncosuppressor  
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).


Challenge: Evaluate how different variants of p16 protein impact its ability to block 
cell proliferation.


Provide a number between 50% that represent the normal proliferation rate of 
control cells and 100% the maximum proliferation rate in case cells.




SNPs&GO prediction

Variant Prediction Real ∆ %WT %MUT
G23R 0.932 0.918 0.014 84 0
G23S 0.923 0.693 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 0.367 84 2
G23C 0.946 0.866 0.080 84 0
G35E 0.590 0.600 0.010 12 14
G35W 0.841 0.862 0.021 12 0
G35R 0.618 0.537 0.081 12 4
L65P 0.878 0.664 0.214 15 1
L94P 0.979 0.939 0.040 56 0

Proliferation rates predicted using the output of SNPs&GO without any optimization.



P16 predictions 
SNPs&GO resulted among the best methods for predicting the impact of P16INK4A  
variants on cell proliferation. 

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0.477 0.495 0.409

Capriotti et al. (2017) Human Mutations. PMID: 28102005.



Whole-genome predictions
Most of the genetic variants occur in non-coding region that represents >98% 
of the whole genome.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M*

Predict the effect of SNVs in non-coding region is a challenging task because 
conservation is more difficult to estimate.


Sequence alignment is more complicated for sequences from non-coding regions.  



PhyloP100 score
Conservation analysis based on the pre-calculated score available at the UCSC 
revealed a significant difference between the distribution of the PhyloP100 
scores in Pathogenic and Benign SNVs.
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PhD-SNPg
PhD-SNPg is a simple method that takes in input 35 sequence-based features 
from a window of 5 nucleotides around the mutated position. 

Method

PhyloPSequence

25-element

Gradient  
Boosting

Probability

-0.6 0.9

1.0 0.0

1.0 9.3

8.0 -1.3

2.6 6.2

A C G T N 7 100

10-element

5’

3’

T 0 0 0 1 0

C 0 1 0 0 0

G➜A -1 0 1 0 0

T 0 0 0 1 0

A 1 0 0 0 0

http://snps.biofold.org/phd-snpg/ 

http://snps.biofold.org/phd-snpg/


Benchmarking  
PhD-SNPg has been tested in cross-validation on a set of 35,802 SNVs and on a blind 
set of 1,408 variants recently annotated.
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Q2 TNR NPV TPR PPV MCC F1 AUC

PhD-SNPg 0.861 0.774 0.884 0.925 0.847 0.715 0.884 0.924

Coding 0.849 0.671 0.845 0.938 0.850 0.651 0.892 0.908

Non-Coding 0.876 0.855 0.911 0.901 0.839 0.753 0.869 0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.



The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA) normal 
and tumor samples shows an increasing number of genes with rare 
nonsynonymous SNVs. 

Mutation rates

Tumor = Colon Adenocarcinoma

PDR = Gene Putative Defective Rate

            Fraction of samples in which a gene has ≥1 

            nonsynonymous variant with MAF≤0.5% 

Cohort %Genes  
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New method for cancer gene prioritization based on the comparison of the 
mutation rates in tumor samples vs normal and 1000 Genomes samples.

Gene prioritization

Gene PDR[T] PDR[B] Score
KRAS 0.436 0.009 72.6
TP53 0.441 0.011 63.7

PIK3CA 0.291 0.007 39.4
BRAF 0.146 0.001 29.9

Colon Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor

PDR[B] = Putative Defective Rate Background

Background = Max (Normal and 1000 Genomes) 

Tian R, Basu M, Capriotti E (2014). Bioinformatics. 30: i572-i578
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