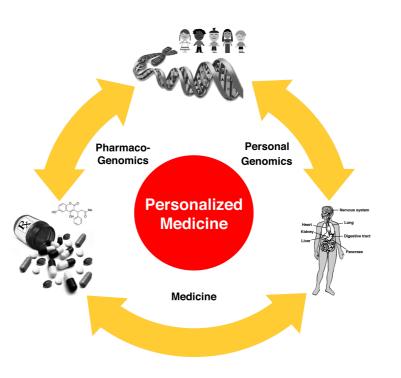
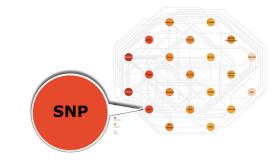

Detection, annotation and interpretation of short variants


Emidio Capriotti


http://biofold.org/

Biomolecules Folding and Disease

Centro di Riferimento Oncologico Aviano (Italy), September 6, 2017

Online Mendeli Inheritance in Man

Hopkins University University.

Department of Biological, Geological, and Environmental Sciences (BiGeA) University of Bologna

Presentation outline

• Variation data resources:

dbSNP, ClinVar, 1000Gemones

• Short variant detection:

Matching reference genome. Variant calling procedures

Variations in Cancer

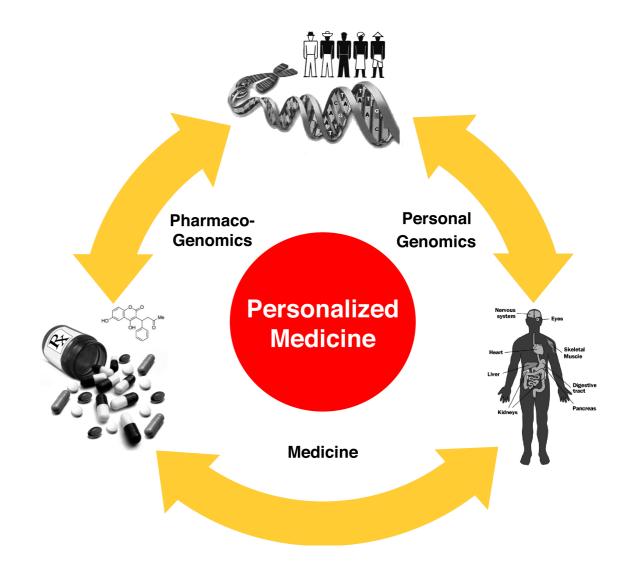
Cancer data resources, gene and variant classification

• Short variant annotation and interpretation:

Annotation and prediction methods

Why genetic variants?

Genetic variation is fundamental to the evolution of all species and is what makes us individuals.


- To study the differences within and between populations, to understand the mechanism of adaptation, speciation, and the population structure.
- To characterize the relationship between genotype and phenotype.
- Design new diagnostic protocols and therapeutic strategies.

Personalized medicine

Genotype test and exam sequencing, is cheap, and soon full genome sequencing cost will drop to \$1000.

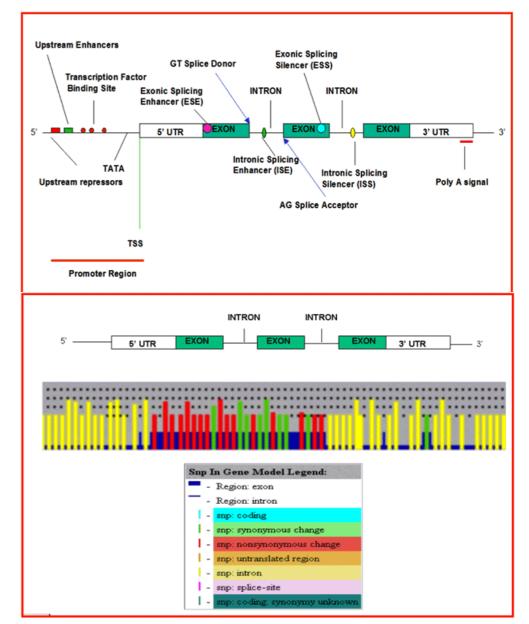
The future bioinformatics challenges for personalized medicine will be:

- 1. Processing Large-Scale Robust Genomic Data
- Interpretation of the Functional Effect and the Impact of Genomic Variation
- 3. Integrating Systems and Data to Capture Complexity
- 4. Making it all clinically relevant

Single Nucleotide Variants

Single Nucleotide Variants (SNVs)

is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the genome differs between members of the species.


It is used to refer to Polymorphisms when the population frequency is $\geq 1\%$

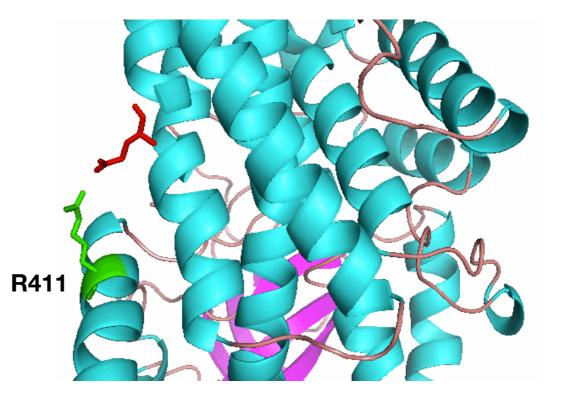
SNVs occur at any position and can be classified on the base of their locations.

Coding SNVs can be subdivided into two groups:

Synonymous: when single base substitutions do not cause a change in the resultant amino acid

Non-synonymous or Single Amino Acid Variants (SAVs): when single base substitutions cause a change in the resultant amino acid.

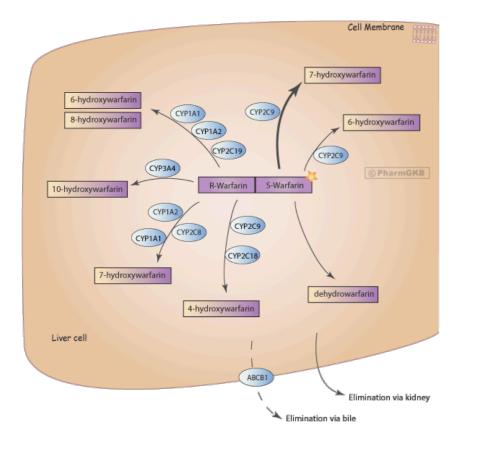
http://www.ncbi.nlm.nih.gov


Sequence, Structure & Function

Genomic variants in sequence motifs could affect protein function. Mutation S362A of P53 affect the interaction with hydrolase USP7 and the deubiquitination of the protein.

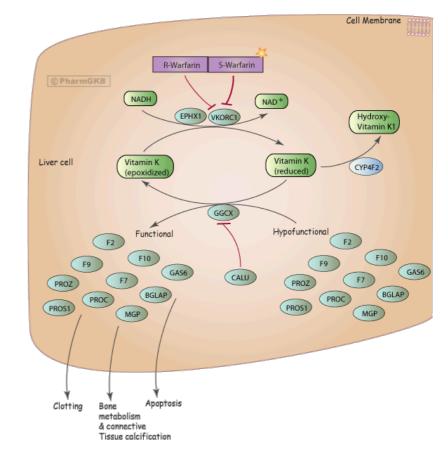
Nonsynonymous variants responsible for protein structural changes and cause loss of stability of the folded protein.

Mutation R411L removes the salt bridge stabilizing the structure of the IVD dehydrogenase.


Variants and drug response

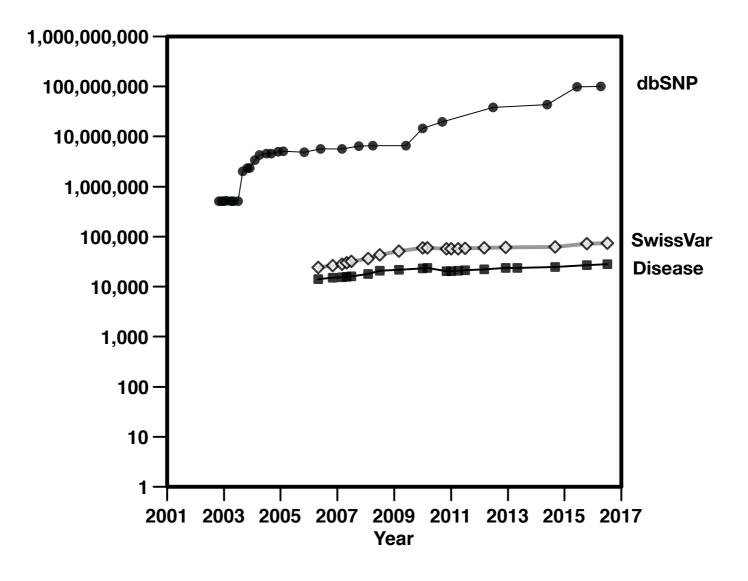
Pharmacogenomics aims at understanding how genetic variants influence drug efficacy and toxicity.

https://www.pharmgkb.org/

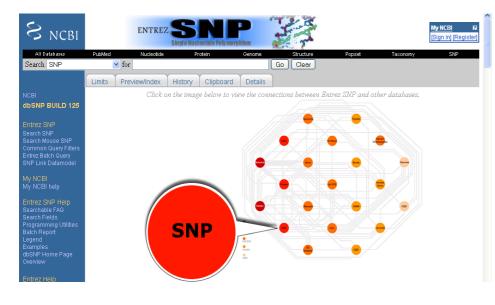

Pharmacokinetics variants: drug undergoes to bioinactivation via metabolic pathway. When the functionality of the pathway is compromised, a much higher concentrations of parent drug will accumulate.

Warfarin and CYP2C9.

Pharmacodynamics variants have an effect on the drug-receptor interactions and concentration. These variations have a directly impact on the dose-response relationships.


Warfarin and VKORC1

Variation data resources


Single Nucleotide Variants (SNVs) are the most common type of genetic variations in human accounting for more than 90% of sequence differences (1000 Genome Project Consortium, 2012).

Capriotti et al. (2012). Briefings in Bioinformatics. 13; 495-512

SNVs and SAVs databases

dbSNP (2016/2017) @ NCBI

http://www.ncbi.nlm.nih.gov/

Single Nucleotide Variants					
Homo sapiens	135,967,291				
Bos taurus	39,722,628				
Mus musculus	16,396,141				

SwissVar (Jun 2017) @ ExPASy

http://www.expasy.ch/swissvar/

Single Amino acid Variants	
Homo sapiens	76,608
Disease	29,529
Polymorphisms	39,779

Non-coding variants

Clinvar reports the clinical significance of ~280,000 short variants. Only 32,305 are annotated as Pathogenic and 17,180 as Benign.

Out of them ~89,000 variants are outside exotic regions, 3,164 are Pathogenic and 9,684 Benign.

SNCBI Resources 🖂	⊙ How To ⊙	n in to NCBI
ClinVar	ClinVar Search ClinVar for gene symbols, HGVS expressions, conditions, and more Advanced	Help
Home About 🔻	Access Help Submit Statistics FTP	
CAGGTACGGCTGT CAGGGCTGGGCAT CCATGGTGCATCT GCAGGTTGGTATC	GGGGCCAAGAGATATATCT ClinVar GTCATCACTTAGACCTCAC ClinVar aggregates information about genomic variation and its relationship to human health. CTGACTCCTGAGGAGAAGT ClinVar aggregates information about genomic variation and its relationship to human health. CCAAGGTTACAAGACAGGT ClinVar aggregates information about genomic variation and its relationship to human health.	

1000 Genomes

The 1000 Genomes Project aims to create the largest public catalogue of human variations and genotype data. Last versione released the genotype of ~2,500 individuals.

Table 1 | Variants discovered by project, type, population and novelty

a Summary of project data including combined exon populations

		Low cov	erage		Trios			Even	
Statistic	CEU	YRI	CHB+JPT	Total	CEU	YRI	Total	Exon (total)	Union across projects
Samples	60	59	60	179	3	3	6	697	742
Total raw bases (Gb)	1,402	874	596	2,872	560	615	1,175	845	4,892
Total mapped bases (Gb)	817	596	468	1,881	369	342	711	56	2,648
Mean mapped depth (\times)	4.62	3.42	2.65	3.56	43.14	40.05	41.60	55.92	NA
Bases accessed (% of genome)	2.43 Gb	2.39 Gb	2.41 Gb	2.42 Gb	2.26 Gb	2.21 Gb	2.24 Gb	1.4 Mb	NA
	(86%)	(85%)	(85%)	(86.0%)	(79%)	(78%)	(79%)		
No. of SNPs (% novel)	7,943,827	10,938,130	6,273,441	14,894,361	3,646,764	4,502,439	5,907,699	12,758	15,275,256
	(33%)	(47%)	(28%)	(54%)	(11%)	(23%)	(24%)	(70%)	(55%)
Mean variant SNP sites per individual	2,918,623	3,335,795	2,810,573	3,019,909	2,741,276	3,261,036	3,001,156	763	NA
No. of indels (% novel)	728,075	941,567	666,639	1,330,158	411,611	502,462	682,148	96	1,480,877
	(39%)	(52%)	(39%)	(57%)	(25%)	(37%)	(38%)	(74%)	(57%)
Mean variant indel sites per individual	354,767	383,200	347,400	361,669	322,078	382,869	352,474	3	NA
No. of deletions (% novel)	ND	ND	ND	15,893	6,593	8,129	11,248	ND	22,025
				(60%)	(41%)	(50%)	(51%)		(61%)
No. of genotyped deletions (% novel)	ND	ND	ND	10,742	ND	ND	6,317	ND	13,826
				(57%)			(48%)		(58%)
No. of duplications (% novel)	259	320	280	407	187	192	256	ND	501
	(90%)	(90%)	(91%)	(89%)	(93%)	(91%)	(92%)		(89%)
No. of mobile element insertions (% novel)	3,202	3,105	1,952	4,775	1,397	1,846	2,531	ND	5,370
	(79%)	(84%)	(76%)	(86%)	(68%)	(78%)	(78%)		(87%)
No. of novel sequence insertions (% novel)	ND	ND	ND	ND	111	66	174	ND	174
					(96%)	(86%)	(93%)		(93%)

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.

Functional variants

An accurate estimation of the number of functional variants is given by the number of variants at conserved positions (GERP score >2). The excess of deleterious rare variants is a significant fraction of the detected variants in the same class.

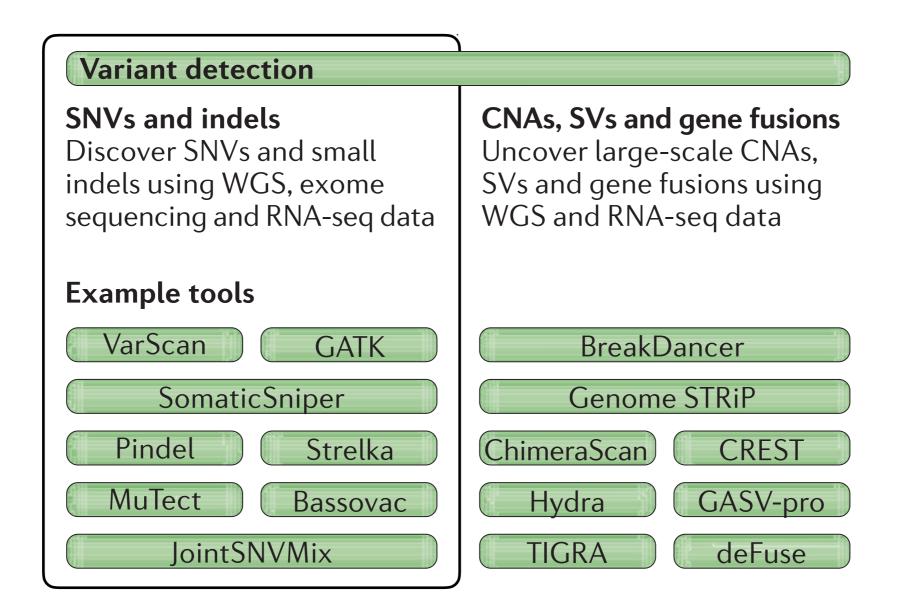

Variant type	Number of d	erived variant sites per ind	Excess rare deleterious	Excess low-frequency deleterious _	
	Derived a	allele frequency across sam			
	<0.5%	0.5–5%	>5%	-	
All sites	30–150 K	120–680 K	3.6–3.9 M	ND	ND
Synonymous*	29–120	82-420	1.3–1.4 K	ND	ND
Non-synonymous*	130–400	240–910	2.3–2.7 K	76–190†	77-130†
Stop-gain*	3.9–10	5.3–19	24–28	3.4–7.5†	3.8–11†
Stop-loss	1.0-1.2	1.0-1.9	2.1-2.8	0.81-1.1†	0.80-1.0†
HGMD-DM*	2.5–5.1	4.8-17	11-18	1.6–4.7†	3.8–12†
COSMIC*	1.3–2.0	1.8-5.1	5.2-10	0.93-1.6†	1.3–2.0†
Indel frameshift	1.0–1.3	11–24	60–66	ND§	3.2–11†
Indel non-frameshift	2.1–2.3	9.5–24	67-71	ND§	0–0.73†
Splice site donor	1.7–3.6	2.4-7.2	2.6-5.2	1.6-3.3†	3.1–6.2†
Splice site acceptor	1.5–2.9	1.5-4.0	2.1-4.6	1.4-2.6†	1.2–3.3†
UTR*	120-430	300-1,400	3.5–4.0 K	0–350‡	0–1.2 K‡
Non-coding RNA*	3.9–17	14–70	180-200	0.62–2.6‡	3.4–13‡
Motif gain in TF peak*	4.7–14	23-59	170-180	0–2.6‡	3.8–15‡
Motif loss in TF peak*	18–69	71–300	580-650	7.7–22‡	37–110‡
Other conserved*	2.0–9.9 K	7.1–39 K	120–130 K	ND .	ND .
Total conserved	2.3–11 K	7.7–42 K	130–150 K	150-510	250–1.3 K

Table 2 | Per-individual variant load at conserved sites

Short variant detection

Variant detection

Variant detection can be performed using several tools. Some method are specific for particular types of variant.

How data looks like?

Variant Calling File (VCF) with germline and somatic variants

<pre>##FORMAT=<id=ss,number=1,type=integer,description="variant non-adjacent="" normal,0='wildtype,"' relative="" status="" to=""> ##FORMAT=<id=ssc,number=1,type=integer,description="somatic 0="" 255"="" and="" between="" score=""> ##FORMAT=<id=ssc,number=1,type=integer,description="number (mapping="" of="" quality="60)" reads="" supporting="" variant"=""> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 1 00048 . C CCT . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:::0:0 0/1:32:.,2:.:2:.:0 1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:::0:0 0/1:22:.,2:.:2:0 1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100 1 1991007 . G T . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:222:.,1:2:0:.:1 0/1:88:.,41:25:2:50:34 </id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="number></id=ssc,number=1,type=integer,description="somatic></id=ss,number=1,type=integer,description="variant></pre>	<pre>##tcgavers ##referend ##phasing= ##geneAnnd ##INFO=<ii ##filter="<" ##format="</pre" ##info="<II"></ii></pre>	ce= <id=hg19, =none D=VT,Number= D=VLS,Number <id=ca,descr <id=gt,numbe <id=dp,numbe <id=ad,numbe< th=""><th>=1,Typ r=1,Ty riptio er=1,T er=1,T er=.,T er=.,T</th><th>e=Stri pe=Int n="Fai ype=St ype=Ir ype=Ir ype=Ir</th><th>teger, il Car tring, nteger nteger nteger</th><th>Descri nac (1 Descri ,Descr ,Descr</th><th>iption="Fin Fumor and no iption="Gen ription="Re ription="De ription="Av</th><th>ormal coverage, t otype"> ad depth at this pth of reads supp erage base qualit</th><th>tus relative to non-adjacer umor variant count, mapping position in the sample"> porting alleles 0/1/2/3"> y for reads supporting alle</th><th>g quality,"> eles"></th><th></th></id=ad,numbe<></id=dp,numbe </id=gt,numbe </id=ca,descr </id=hg19, 	=1,Typ r=1,Ty riptio er=1,T er=1,T er=.,T er=.,T	e=Stri pe=Int n="Fai ype=St ype=Ir ype=Ir ype=Ir	teger, il Car tring, nteger nteger nteger	Descri nac (1 Descri ,Descr ,Descr	iption="Fin Fumor and no iption="Gen ription="Re ription="De ription="Av	ormal coverage, t otype"> ad depth at this pth of reads supp erage base qualit	tus relative to non-adjacer umor variant count, mapping position in the sample"> porting alleles 0/1/2/3"> y for reads supporting alle	g quality,"> eles">	
<pre>##FORMAT=<id=mq60,number=1,type=integer,description="number (mapping="" of="" quality="60)" reads="" supporting="" variant"=""> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL PRIMARY 1 10048 . C CCT . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:.:0:.:0 0/1:32:.,2:.:2:.:0 1 10078 . CT C . CA VT=DEL;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:.:0:.:0 0/1:13:.,2:.:2:.:0 1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:.:0:.:0 0/1:22:.,2:.:2:.:0 1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100</id=mq60,number=1,type=integer,description="number></pre>					-		-		-	,0=wildtype,">	
1 10048 . C CCT . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:::0:::0 0/1:32:.,2:::2:::0 1 10078 . CT C . CA VT=DEL;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:::0:::0 0/1:32:.,2:::2:::0 1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:::0:::0 0/1:13:.,2:::2:::0 1 1 .					-		-			ing variant">	
1 10078 . CT C . CA VT=DEL;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0::0::0 0/1:13:.,2::2::0 1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0::0::0 0/1:13:.,2::2::0 0/0:57:.,0::0::0 0/1:22:.,2::2::0 1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100 	#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NORMAL	PRIMARY
1 10177 A AC CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:.:0:.:0 0/1:22:.,2:.:2:.:0 900505 GC PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100	1	10048	•	С	CCT	•	CA	VT=INS;VLS=5	GT:DP:AD:BQ:SS:SSC:MQ60	0/0:66:.,0:.:0:.:0	0/1:32:.,2:.:2:.:0
<pre></pre>	1	10078	•	СТ	С	•	CA	VT=DEL;VLS=5	GT:DP:AD:BQ:SS:SSC:MQ60	0/0:25:.,0:.:0:.:0	0/1:13:.,2:.:2:.:0
900505 G C PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:,89:26:1::81 0/1:210:,113:24:1:.:100	1	10177	•	А	AC	•	CA	VT=INS;VLS=5	GT:DP:AD:BQ:SS:SSC:MQ60	0/0:57:.,0:.:0:.:0	0/1:22:.,2:.:2:.:0
1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100 											
	1	900505	•	G	С	•	PASS	VT=SNP;VLS=5	GT:DP:AD:BQ:SS:SSC:MQ60	0/1:188:.,89:26:1:.:81	0/1:210:.,113:24:1:.:100
		1991007	•	G	т	•	PASS	VT=SNP;VLS=5	GT:DP:AD:BQ:SS:SSC:MQ60	0/0:222:.,1:2:0:.:1	0/1:88:.,41:25:2:50:34

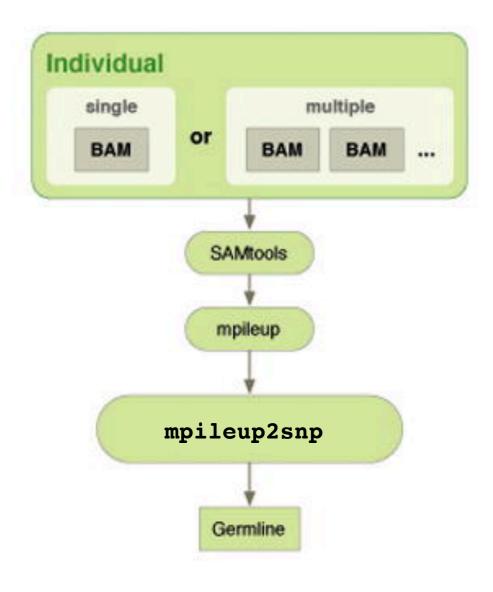
Variant significance

The probability of observing a particular variant by chance can be calculated using different procedure.

VarScan2 uses Fisher's exact test where the background distribution correspond all reads mapping the reference allele.

```
CHROM: chr17
                                                Contingency Table
POS: 560603
ID: .
                                                               G
                                                         Α
REF: A
                                                Data
                                                        43
                                                              51
ALT: G
QUAL: .
                                             Background
                                                        94
                                                               0
FILTER: PASS
INFO: ADP=94; WT=0; HET=1; HOM=0; NC=0
FORMAT: ADP=94;WT=0;HET=1;HOM=0;NC=0
FORMAT: GT:GO:SDP:DP:RD:AD:FREO:PVAL:RBO:ABO:RDF:RDR:ADF:ADR
SAMPLE: 0/1:194:94:94:43:51:54.26%:3.3469E-20:40:40:14:29:13:38
```

samtools view


Usage: samtools tview [options] <aln.bam> [ref.fasta]

samtools tview -p chr17:7674200 bam/tumor_chr17.bam hg38/GRCh38.d1.vd1.fa

7674201 7674211 7674221 767423	31 7674241 7674251
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCAT	GCAGGAACTGTTACACATGTAGTT
. R	
TGATGG GAGGATGGGCCTCCGGTTCATGTCGCCCAT	
TGATGGG AGGATGGGCCTCCGGTTCATGCCGCCCAT	
TGATGGG GGATGGGCCTCCGGTTCATGCCGCCCAT	
TGATGGTGAGGA GGGCCTCCGGTTCATGCCGCCCAT	
TGATGGTGAGGA GGGCCTCCGGTTCATGCCGCCCAT	GCAGGAACTGTTACACATGTAGTT
TGATGGTGAGGA ggcctccagttcatgccgcccat	
	GCAGGAACTGTTACACATGTAGTT
tgatggtgaggatgg CCTCCAGTTCATGCCGCCCAT	
TGATGGTGAGGATGGGCCT cggttcatgccgcccat	
tgatggtgaggatgggcctcca TCATGCCGCCCAT	
tgatggtgaggatgggcctccggttc cccat	
TGATGGTGAGGATGGGCCTCCAGTTCATGCCGCCC	gcaggaactgttacacatgtagtt
	gcaggaactgttacacatgtagtt
tgatggtgaggatgggcctccggttcatgccgccc	caggaactgttacacatgtagtt
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCA	gaactgttacacatgtagtt
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCA	gaactgttacacatgtagtt
tgatggtgaggatgggcctccagttcatgccgcccat	
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCAT	
tgatggtgaggatgggcctccggttcatgccgcccat	
tgatggtgaggatgggcctccggttcatgccgcccat	gcag acacatgtagtt
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCAT	
TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCAT	GCAGGAACIGIIALAL

+ -=	- Help -=-
ctrl-H ctrl-L space	This window Small scroll movement Small scroll movement Large scroll movement Scroll 1k left Scroll 1k right Scroll one screen Scroll one screen Scroll back one screen Go to specific location Color for mapping qual Color for nucleotide Color for cs color Color for cs qual Toggle on/off dot view Toggle on/off rd name Turn on nt view Turn on cs view Toggle on/off ins
q Underline:	2 1 1
Blue: 0 Yellow: 20	

VarScan2 germline call

STEP1

samtools mpileup [options] in1.bam

samtools mpileup -B -q 1 -f
hg38/GRCh38.d1.vd1.fa bam/normal_chr17.bam
>normal_chr17.mpileup

STEP 2

java -jar VarScan.v2.4.1.jar
mpileup2snp mpileupfile [options]

```
java -jar VarScan.v2.4.1.jar mpileup2snp
normal_chr17.mpileup --min-coverage 10
-min-var-freq 0.2 --p-value 0.05
-output-vcf 1 > normal_chr17.snp.vcf
```

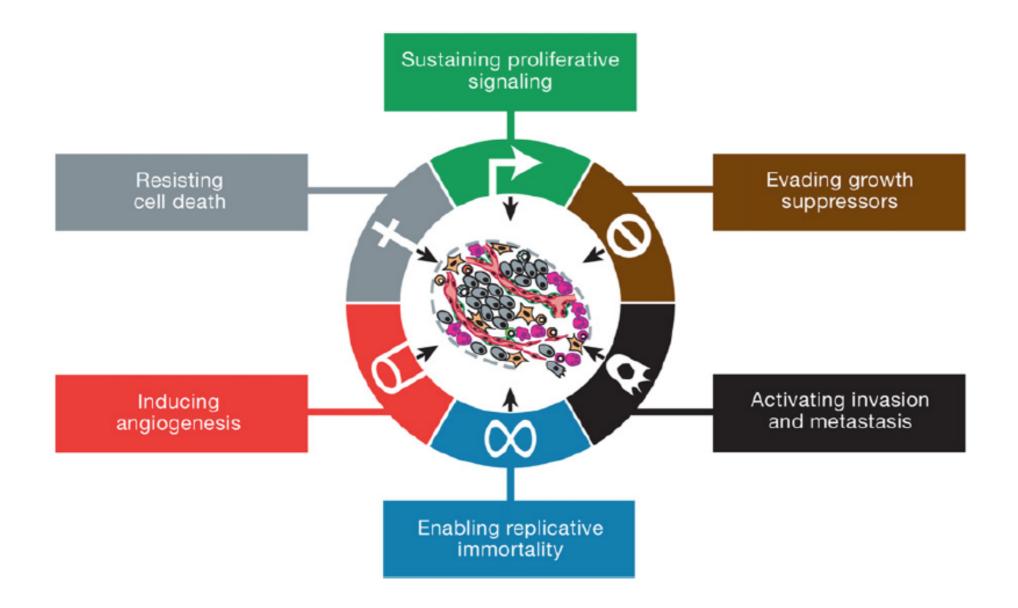
vcftools

Powerful tools for manipulating the variant call format (VCF) and binary variant call format (BCF)

Select a chromosome region

Select variant with a minimum depth

vcftools --vcf 1kgenomes/tp53_1kgenomes.vcf --minDP 4 --recode __stdout


Select genotype of specific individuals

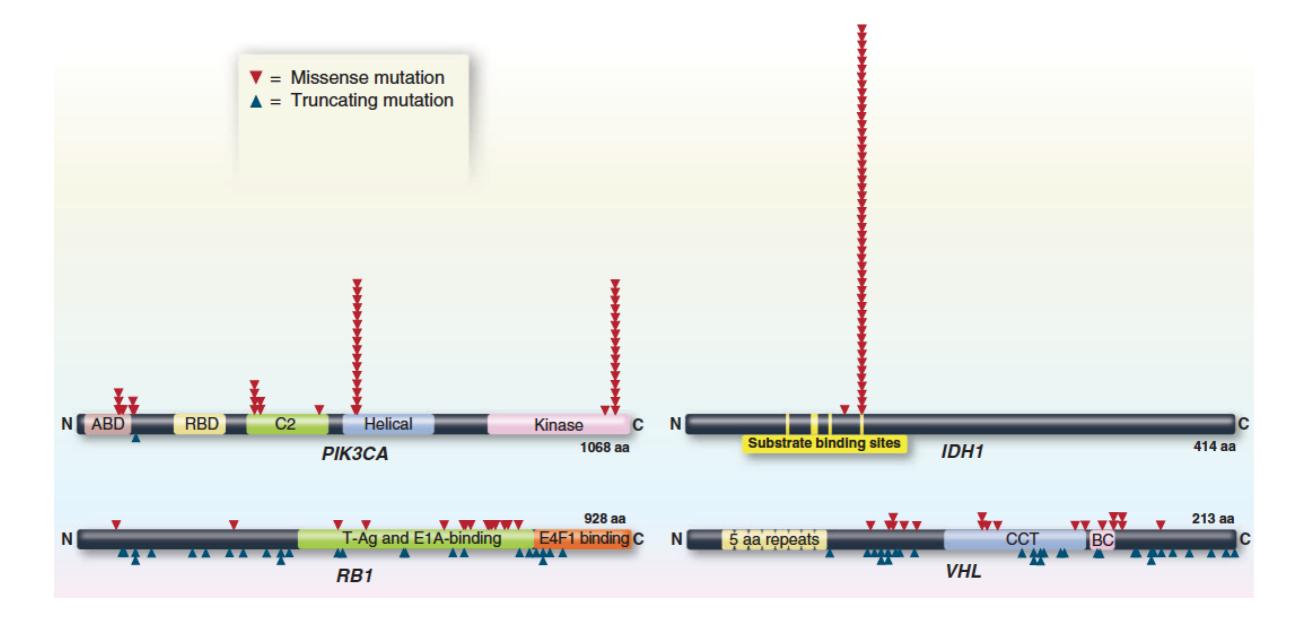
Compare vcf files

Variations in Cancer

Hallmarks of cancer

The six hallmarks of cancer - distinctive and complementary capabilities that enable tumor growth and metastatic dissemination.

The complexity of cancer


Cancer is **complex disorder** characterized by high level of mutation rate.

Mutations can be classified in germline and somatic whether they are inherited from parents or the result of error in DNA replication.

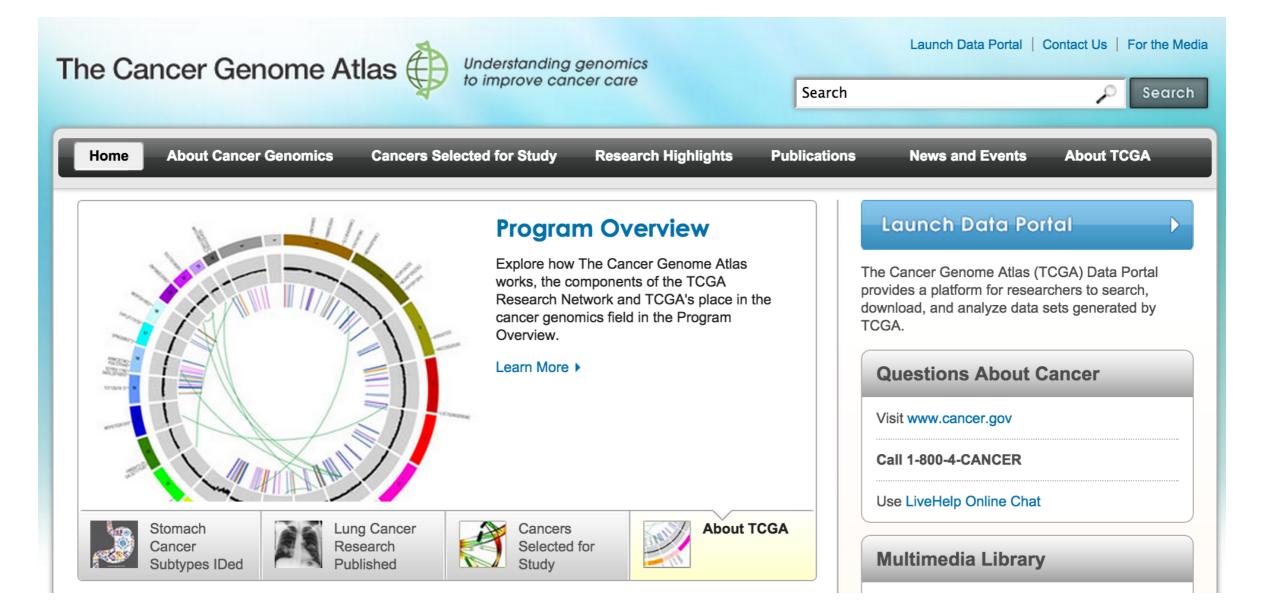
Another classification is between driver and passenger mutations whether they provide selective advantage with respect to normal cells increasing their proliferation rate or not.

Oncogene vs Suppressor

Oncogenes have highly recurrent mutations, tumor suppressors have sparse variants.

Main challenges

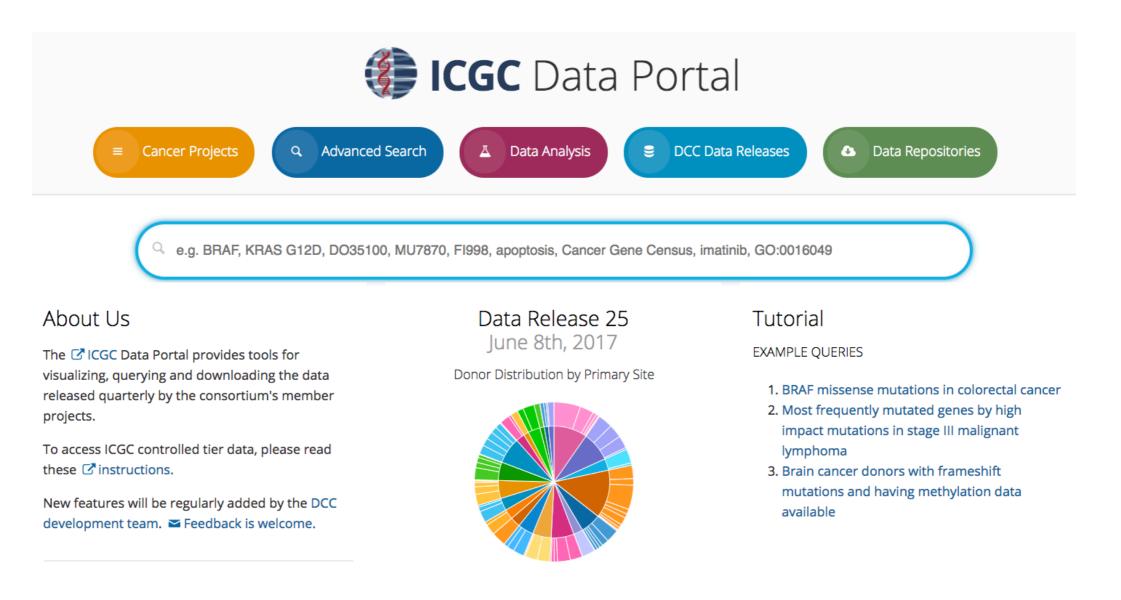
Computational methods for cancer genome interpretation have been developed to address the following issues:


- Detection of recurrent somatic mutations and cancer driver genes;
- Prediction of driver variants and their functional impact;
- Estimate the impact of multiple variants at network and pathway level;
- Differentiate subclonal populations and their variation pattern.

The TCGA portal

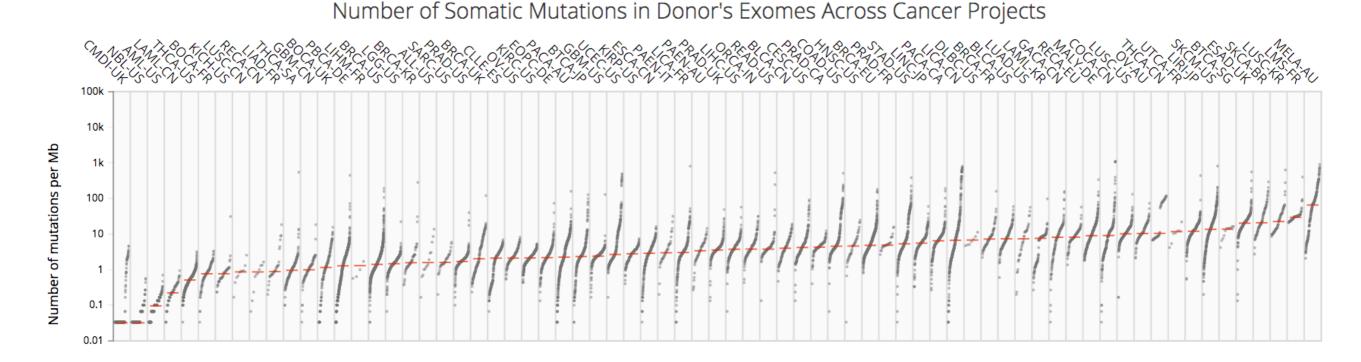
The Cancer Genome Atalas Consortium

TCGA (http://cancergenome.nih.gov/)


- 36 cancer types
- BAM files available through the CGHub portal

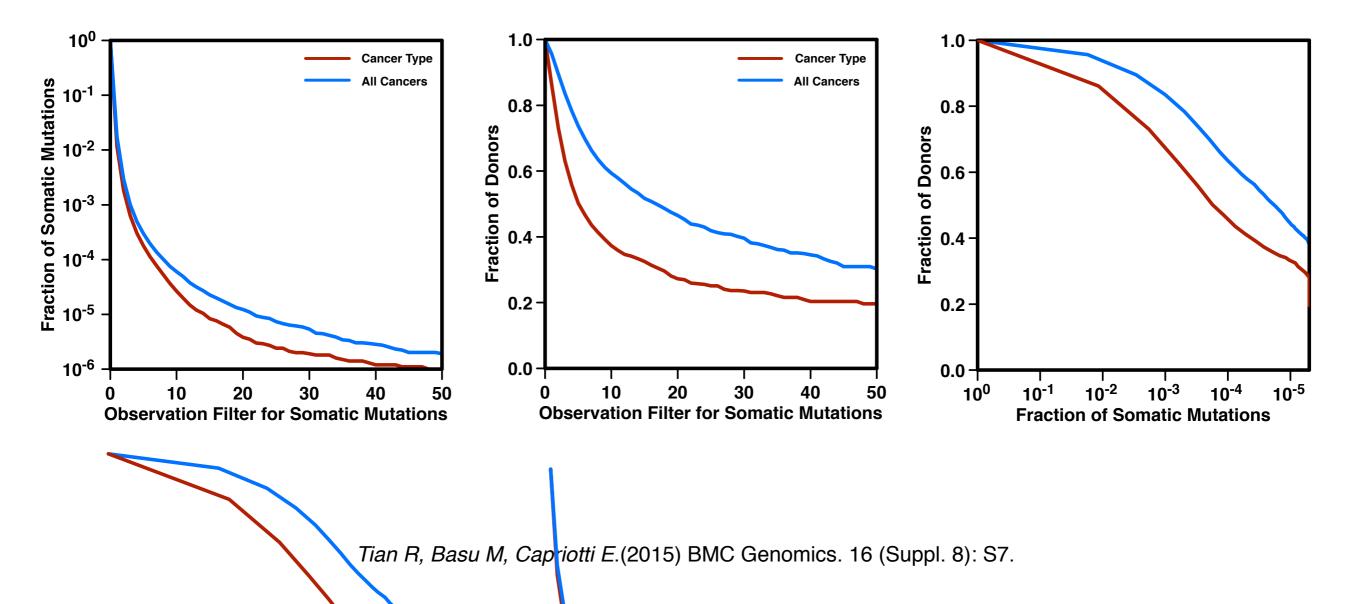
The ICGC data portal

The International Cancer Genome Consortium

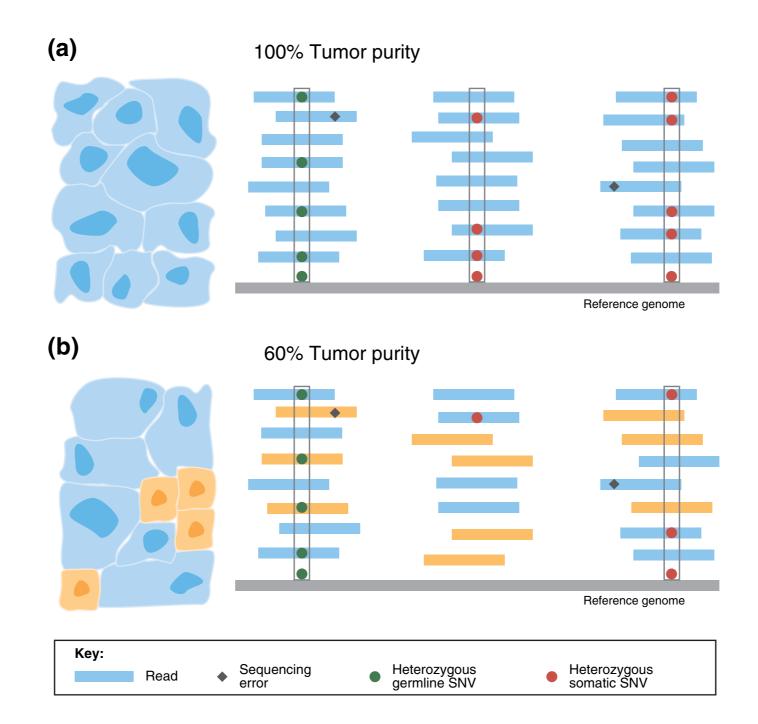

- 17,570 cancer patients
- 76 cancer projects in 21 primary sites
- more than 63 million simple somatic mutations.

ICGC (https://dcc.icgc.org/)

Mutational landscape

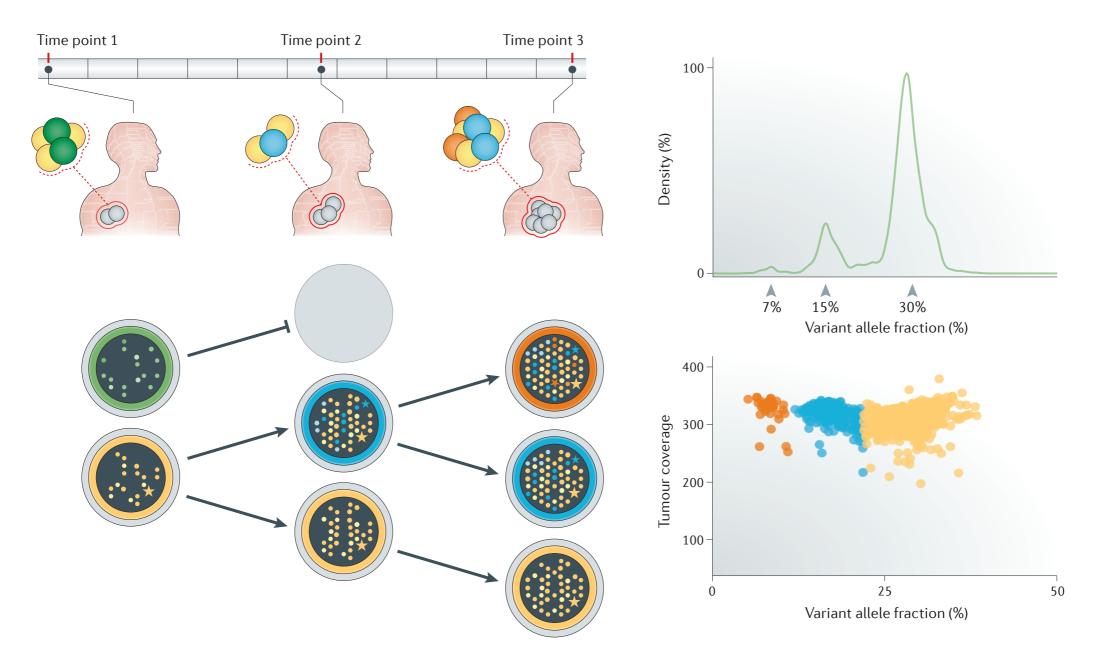

The distribution of somatic variants varies significantly across cancer types

Driver vs Passenger


Number of recurrent mutations decrease exponentially. On average a small fraction of variants a present in the majority of the samples.

Selecting mutations that are repeated at least twice we filter out ~98% mutations and are still able to recover ~96% of the patients

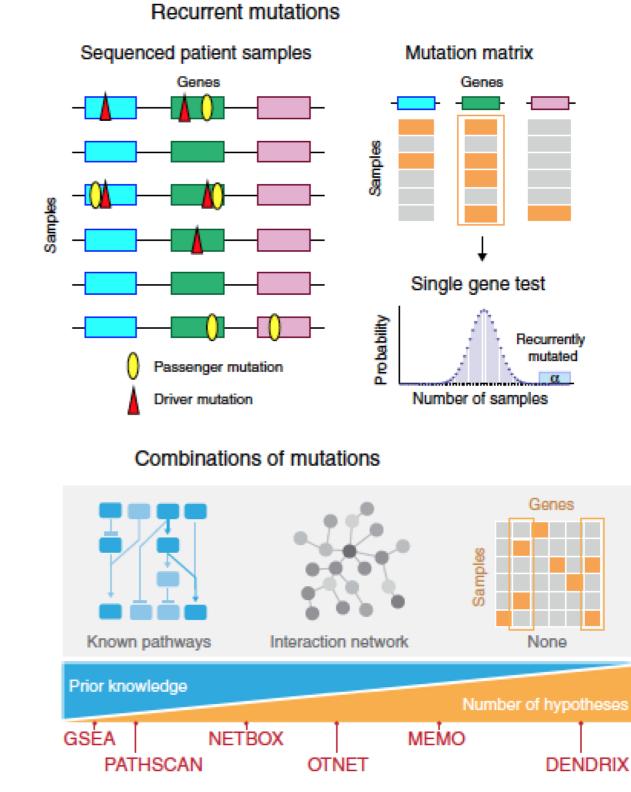
Sample purity


Impurity in the sample purity reduce the ability to detect variants

Raphael et al. (2014) Genome Medicine, 6:5

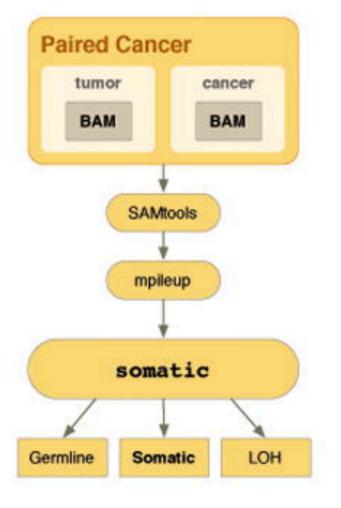
Clonal evolution

On average tumor samples have ~150 more rare missense variants and mutated genes


Ding et al (2014). Nat. Rev Genetics.

Recurrent variations

Recurrent mutations found in more samples than expected are good candidates for driver mutations.


To identify such recurrent mutations, a statistical test is performed which usually collapses all the non-synonymous mutations in a gene.

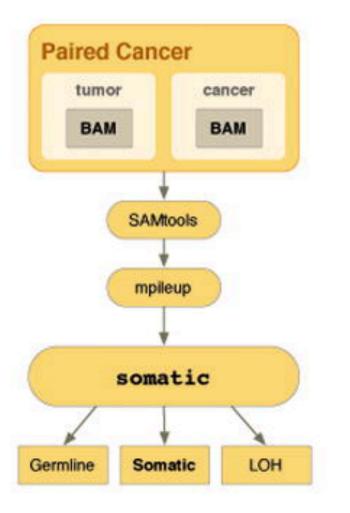
Identification of recurrent mutations in predefined groups of genes such as pathways and protein-protein interaction networks and de novo identification of combinations, without relying on a priori definition.

Raphael et al. Genome Medicine 2014, 6:5

VarScan2 somatic call (I)

STEP 1

samtools mpileup [options] in1.bam in


```
samtools mpileup -B -q 1 -f
hg38/GRCh38.d1.vd1.fa bam/normal_chr17.bam
bam/tumor_chr17.bam
>normal_tumor_chr17.mpileup
```

STEP 2

```
java -jar VarScan.v2.4.1.jar
somatic mpileupfile outfile.mpileup [options]
```

java -jar VarScan.v2.4.1.jar somatic normal_tumor.mpileup normal_tumor.vcf --output-vcf 1 --min-coverage 3 --min-var-freq 0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 0 --mpileup 1

VarScan2 somatic call (II)

STEP 3

java -jar VarScan.v2.4.1.jar processSomatic
 variant_file

java -jar VarScan.v2.4.1.jar processSomatic normal_tumor.vcf.snp

STEP 4

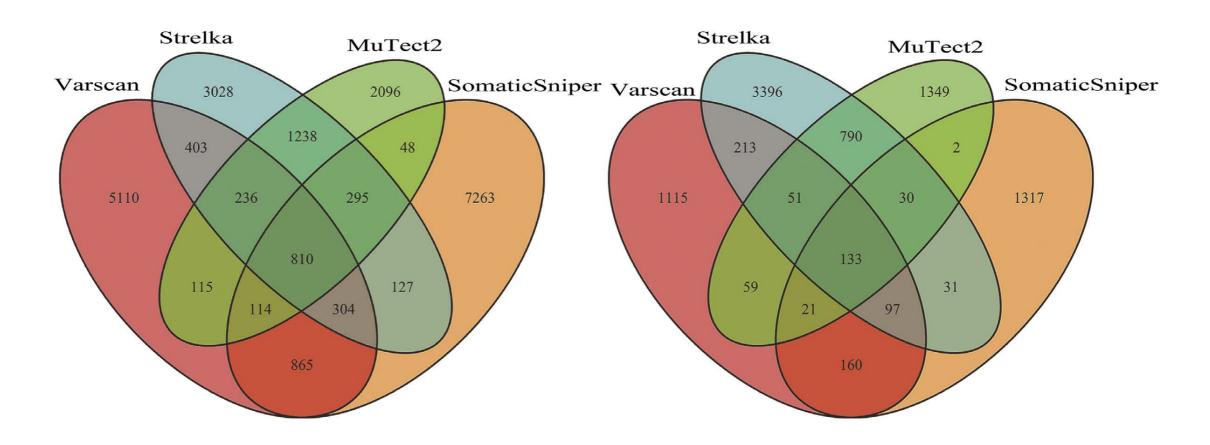
java -jar VarScan.v2.4.1.jar somaticFilter somatic.snp.hc -indel-file somatic.indel.hc --output-file somatic.snp.hc.filter

java -jar VarScan.v2.4.1.jar somaticFilter normal_tumor.vcf.snp.Somatic.hc --indel-file normal_tumor.vcf.indel.Somatic.hc --output-file normal_tumor.vcf.Somatic.hc.filter

Somatic variant significance

The probability of observing a particular somatic variant by chance can be calculated using different procedure.

VarScan2 uses Fisher's exact test where the background distribution corresponding to threads in the normal sample.

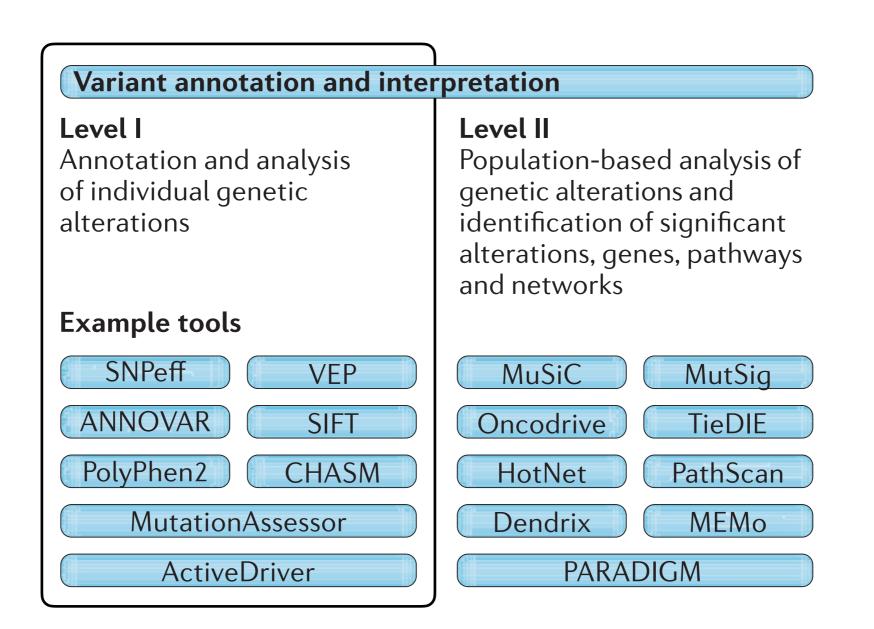

CHROM: chr17

```
Contingency Table
```

POS: 7674221		Α	G
ID: .			
REF: G	TUMOR	36	19
ALT: A	NORMAL	47	0
QUAL: .	NORMAL	47	0
FILTER: PASS			
<pre>INFO: DP=102;SOMATIC;SS=2;SSC=58;GPV=1E0;</pre>	SPV=1.4006	5E-6	
FORMAT: ADP=94;WT=0;HET=1;HOM=0;NC=0			
FORMAT: GT:GQ:DP:RD:AD:FREQ:DP4			
NORMAL: 0/0:.:47:47:0:0%:31,16,0,0			
TUMOR: 0/1:.:55:36:19:34.55%:26,10,12,7			

Variant callers survey

A survey of four somatic variant callers revealed that only a little fraction of detected variants are in common among methods


WES-Seq

UDT-Seq

Short variant annotation and interpretation

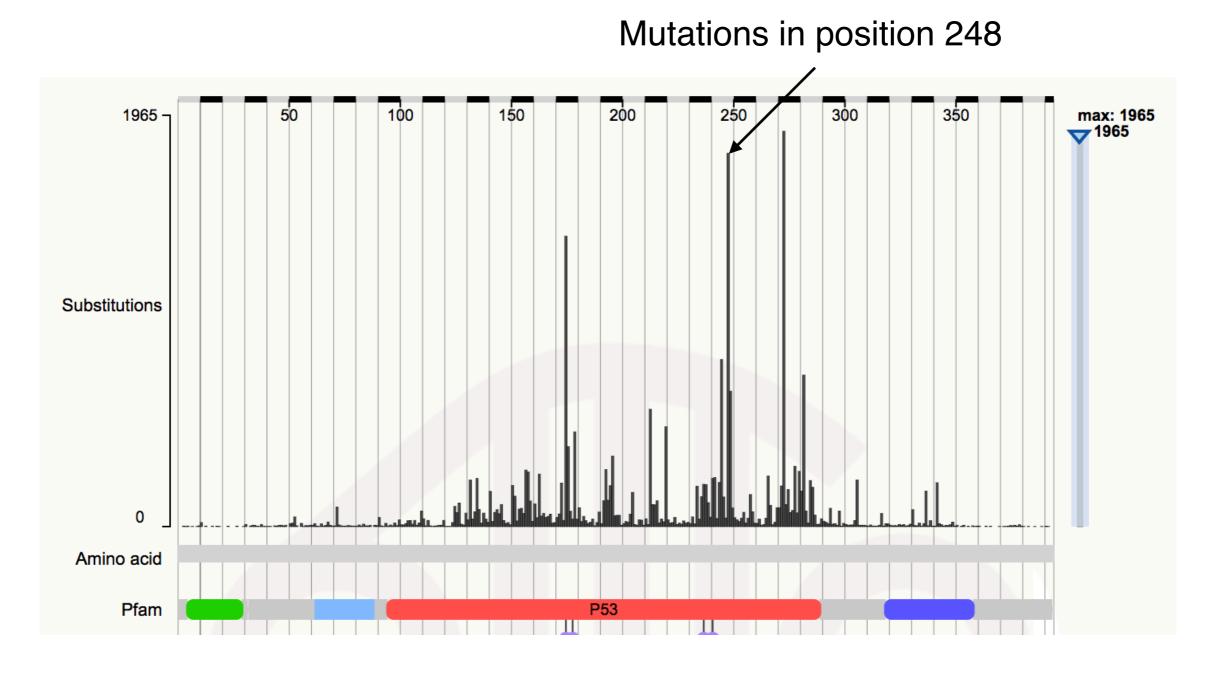
Annotation and interpretation

Annotation define the effect of the variants and its location. Variant interpretation consists in predicting its functional/phenotypic effect

Aims of variant annotation

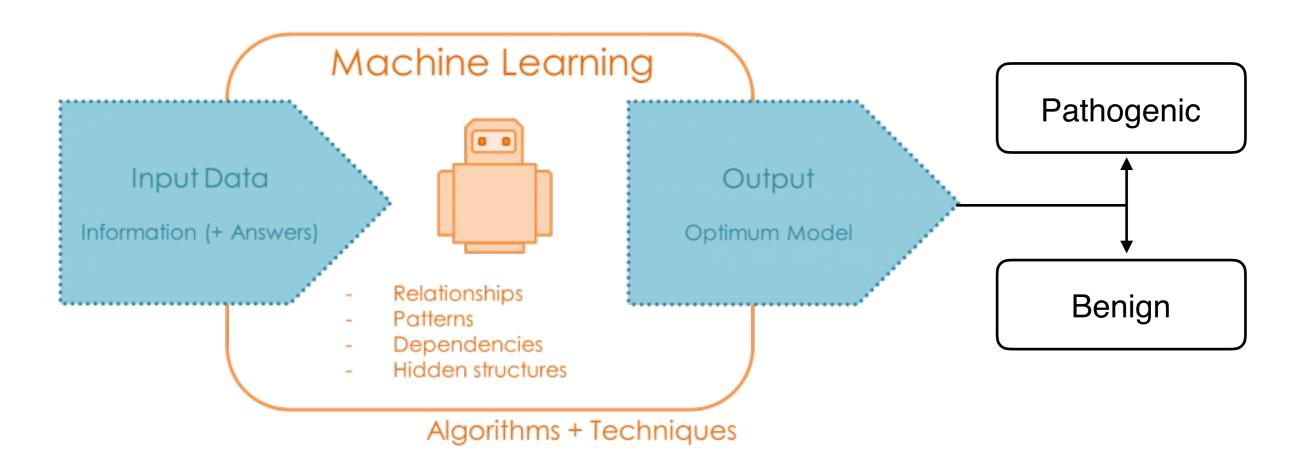
- Identify the gene(s) that overlaps with the variant
- Determine whether the variant is located in an exon
- Determine whether the variant is located in the coding sequence
- If the variant is a SNV, determine whether the encoded amino acid is changed, if so annotate as missense
- If the variant is located right before or after an exon/intron boundary, annotate as splicing
- If the variant removes/adds nucleotides from the CDS, annotate as deletion/insertion

Variant Effect Predictor (VEP) determines the effect of your variants (SNPs, insertions, deletions, CNVs or structural variants) on genes, transcripts, and protein sequence, as well as regulatory regions.


```
vep -i vcf_file -o annotated_vcf_-symbol --canonical --force
--vcf --af --offline --dir /nfs/vep/
```

```
vep -i normal_tumor.vcf.snp.Somatic.hc.filter
  -o normal_tumor.vcf.snp.Somatic.hc.filter.vep --symbol
  --canonical --force --vcf --af --offline --dir /nfs/vep
```

Looking at the VCF output, find out what is the effect of SNV in chromosome 17, position 7,674,221 from G to A.



The Catalog of Somatic mutations in cancer (COSMIC) is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer.

Variant interpretation

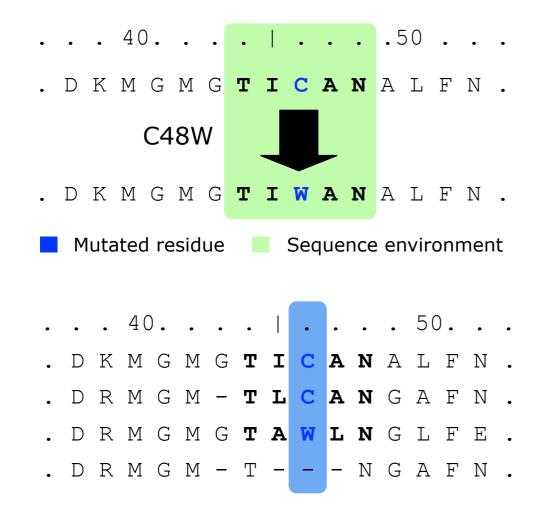
Usually based learning algorithm which takes in input features associated to the variants and returns a probability for the variant to be Pathogenic or Benign

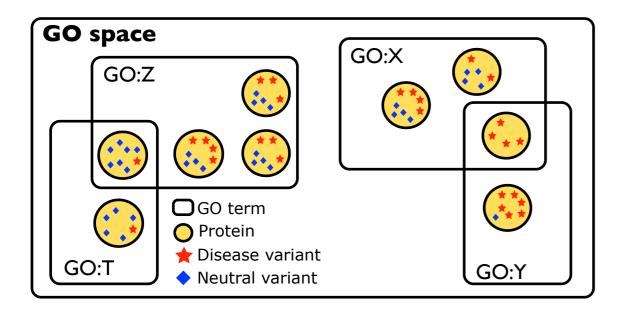
Conserved or not?


In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 is mutated Threonine or Alanine

					1	. [•			:			•			•		. 8	30
	bits	E-value	Ν	100.0%		MDV	GSKE	VLM	ESPP	DYS	AAPI	RGRF	GIPC	CPV	HLK	RLLI	vvv	vvv	LIVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	GAPEA	QQ	
1 P11686	400	1e-110	1	100.0%		MDV	GSKE	VLM	ESPP	DYSA	AAP	RGRF	GIP	CPV	HLKI	RLL1	vvv	vvv	LIVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	GAPEA	QQ	
2 P15783	280	3e-74	1	80.6%		MDV	GSKE	VLM	ESPP	DYTZ	AVPO	G <mark>GR</mark> L	LIP	CPV	NIKI	RLL1	vvv	נעעע	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	TGPEA	QQ	
3 P21841	276	6e-73	1	78.7%		MDM	SSKE	VLM	ES PP	DYS	AGPI	RSQF	RIP	CPV	HLKI	RLLI	vvv	vvv	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	GAPET	' Q K	
4 P22398	270	3e-71	1	78.2%		MDM	GSKE	ALM	ESPP	DYS	AAPI	RGRF	GIPC	CPV	HLK	RLL1	vvv	נעעע	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	GAPEV	<u>'QQ</u>	
5 Q1XFL5	268	1e-70	1	80.2%		MDV	GSKE	VLM	ESPP	DY <mark>S</mark>	AVPO	G <mark>GR</mark> L	RIP	CPV	NLK	RLLV	7777	VVV	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	AGPEA	QQ	
6 UPI0000E219B8	261	1e-68	1	89.4%		MDV	GSKE	VLM	ESPP	DY <mark>S</mark>	AAPI	RGRF	GIPC	CPV	HLK	RLL1	VVV	VVV	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	GAPEA	QQ	
7 UPI00005A47C8	259	6e-68	1	78.2%		MDV	GSKE	VLI	ESPp	dY <mark>S</mark>	AAPI	RGRL	GIP	FPS	SLK	RLL1	IVV	VIVI	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSM	I <mark>G</mark> GP <mark>E</mark> A	QQ	
8 Q3MSM1	206	8e-52	1	83.4%		MDV	GSKE	VLM	ESPP	DYS2	AVPO	G <mark>GR</mark> L	RIP	CPV	NLKI	RLLV	7777	VVV	LVVV	VIV	ALLM	IGLH	M <mark>SQK</mark> I	HTE	MVL	EMSI	AGPEA	QQ	
9 Q95M82	85	3e-15	1	82.4%																					-VL	EMSI	GGPEA	PQ	
10 UPI000155C160	84	4e-15	1	48.9%																									
11 UPI0001555957	82	1e-14	1	83.6%																			-						
12 B3DM51	81	4e-14	1	34.8%																		H	M <mark>SQK</mark> I	HTE	FIF	2M <mark>S</mark> I		Q D	
• • • • •																								0					
					81						1											~				:			60
	bits	E-value	N	100.0%	81		L <mark>SE</mark> H	• ILVT	TATF	SIG	1 STGI	LVVY	DYOC	DLLI	AYK	PAPO	• STCC	YIM	KIAF	ESII	SLEA		• KVHNI	FOMI	ECSI	: Loaf	PAVPT		L60
1 P11686	bits 400	E-value 1e-110		100.0% 100.0%	81	RLA																					PAVP1	SK	L60
				100.0%	81	RLA RLA	L <mark>SE</mark> H	ILVT	TATF	' <mark>SIG</mark>	STGI	LVVY	DYQÇ	DLLI	AYK	PAPG	TCC	YIM	KIAF	ESI	SLEA	INR	KVHNI	FQM	ECS1	LQAF		SK SK	L60
1 P11686	400	1e-110	1 1	100.0%	81	RLA RLA RLA	L <mark>SE</mark> H L <mark>SE</mark> R	ILVT RVGT	TATF	SIGS	STGI STGI	LVVY TVVY	DYQQ DYQF	DLLI SLLI	AYK AYK	PAPO PAPO	GTCC	YIM YIM	KIAF KMAF	ESII QNII	PSLEA PSLEA	L <mark>N</mark> R	KVHNI KLQNI	FQMI F	ECSI	LQAF -QAF	PAVPT	SK SK SK	L60
1 P11686 2 P15783	400 280	1e-110 3e-74	1 1	100.0% 80.6% 78.7%	81	RLA RLA RLA RLA	L <mark>SE</mark> H L <mark>SE</mark> R P <mark>SE</mark> R	ILVT RVGT RADT	TATF TATF IATF	SIGS SIGS	STGI STG1 STG3	LVVY TVVY IVVY	DYQQ DYQF DYQF	OLLI RLLI RLLT	AYK AYK AYK	PAPO PAPO PAPO	GTCC GTCC GTYC	YIM YIM YIM	KIAF KMAF KMAF	ESII QNII ESII	SLEA SLEA SLEA	INR ITR FAR	KVHNI KLQNI KLQNI	FQMI F F	ECSI	LQAF -QAF -RAF	PAVP <mark>1</mark> PQVPS	SK SK SK	L60
1 P11686 2 P15783 3 P21841(Mouse)	400 280 276	1e-110 3e-74 6e-73	1 1 1	100.0% 80.6% 78.7% 78.2%	81	RLA RLA RLA RLA RLA	LSEH LSER PSER L <mark>SE</mark> W	ILVT RVGT RADT IAGT	TATF TATF IATF TATF	' <mark>SIG</mark> 'SIG 'SIG 'SIG	STGI STGJ STGJ STGJ	LVVY TVVY IVVY IVTC	DYQQ DYQF DYQF DYQF	LLI LLI LLT LLT	AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO	GTCC GTCC GTYC GTCC	YIM YIM YIM YIM	KIAF KMAF KMAF KMAF	ESII QNII ESII DSII	PSLEA PSLEA PSLEA PSLEA	LNR LTR FAR	KVHNI KLQNI KLQNI K	FQMI F F	ECSI	LQAK -QAK -RAK FQAN	PAVPT PQVPS PSTPT	SK SK SK SK TQ	L60
1 P11686 2 P15783 3 P21841(Mouse) 4 P22398	400 280 276 270	1e-110 3e-74 6e-73 3e-71	1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2%	81	RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH	ILVT RVGT RADT IAGT IVGT	TATF TATF IATF TATF TATF	SIG SIG SIG PIG SIG	STGI STGJ STGJ STGJ SSG1	LVVY TVVY IVVY IVTC NVVY	DYQÇ DYQF DYQF DYQF DYQF	QLLI RLLI RLLT RLLI RLLI	AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTYC GTCC GTCC	YIM YIM YIM YIM YLM	KIAF KMAF KMAF KMAF KMSF	PESII QNII ESII DSII QSMI	SLEA SLEA SLEA SLEA SLEA	LNR LTR FAR LAR	KVHNI KLQNI KLQNI K KFQNI	FQM] F F FQV-	ECSI 	LQAF -QAF -RAF FQAN VQAF	PAVPI PQVPS PSTPI PAEPP	SK SK SK TQ SK	160
1 P11686 2 P15783 3 P21841(Mouse) 4 P22398 5 Q1XFL5	400 280 276 270 268	1e-110 3e-74 6e-73 3e-71 1e-70	1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4%	81	RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH LSEH	ILVT RVGT RADT NAGT IVGT ILVT	TATF TATF IATF TATF TATF TATF	SIG SIG SIG SIG SIG SIG	STGI STGI STGI STGI SSGI STGI	LVVY TVVY IVVY IVTC NVVY LVVY	DYQÇ DYQF DYQF DYQF DYQF DYQF	QLLI RLLT RLLT RLLI RLLI QLLI	AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTYC GTCC GTCC GTCC	YIMI YIMI YIMI YLMI YVMI YIMI	KIAF KMAF KMAF KMAF KMSF KIAF	ESII QNII ESII DSII QSMI ESII	PSLEA PSLEA PSLEA PSLEA PSLEA	LNR LTR LAR LAR LAR LTK	KVHNI KLQNI KLQNI K KFQNI KVQNI	FQMI F F FQV- FQG(ECSI 	LQAK -QAK -RAK FQAN VQAK PQGE	PAVPI PQVPS PSTPI PAEPP PSTPI	SK SK SK TQ SK KR	L60
1 P11686 2 P15783 3 P21841(Mouse) 4 P22398 5 Q1XFL5 6 UPI0000E219B8	400 280 276 270 268 261	1e-110 3e-74 6e-73 3e-71 1e-70 1e-68	1 1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4% 78.2%	81	RLA RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH LSEH LSEH	ILVT RVGT RADT NAGT IVGT ILVT RVGT	TATF TATF IATF TATF TATF TATF TATF	SIG SIG SIG SIG SIG SIG SIG	STGI STGJ STGJ STGJ SSGN STGJ STGJ	LVVY TVVY IVVY IVTC NVVY LVVY IVVY	DYQQ DYQF DYQF DYQF DYQF DYQG DYQF	QLLI RLLI RLLI RLLI QLLI RLLI	AYKI AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTCC GTCC GTCC GTCC	YIM YIM YIM YLM YVM YIM YIM	KIAF KMAF KMAF KMAF KMSF KIAF KIAF	PONIE PONIE POSIE POSIE POSIE POSIE POSIE POSIE POSIE POSIE	PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA	LNR TR FAR LAR LTK LTR	KVHNI KLQNI KLQNI KFQNI KFQNI KVQNI	FQMI F F FQV- FQG FQV-	ECSI 	LQAK -QAK -RAK FQAN VQAK PQGE K	PAVPT PQVPS PSTPT PAEPP PSTPT RKRPG	SK SK SK TQ SK KR SK	160
1 P11686 2 P15783 3 P21841(Mouse) 4 P22398 5 Q1XFL5 6 UPI0000E219B8 7 UPI00005A47C8	400 280 276 270 268 261 259	1e-110 3e-74 6e-73 3e-71 1e-70 1e-68 6e-68	1 1 1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4% 78.2% 83.4%	81	RLA RLA RLA RLA RLA RLA RLA	LSEH LSER LSEW LSEH LSEH LSEH LSEH	ILVT RVGT RADT IAGT IVGT RVGT IVGT	TATF TATF TATF TATF TATF TATF TATF TATF	'SIG 'SIG 'SIG 'PIG 'SIG 'SIG 'SIG	STGI STGJ STGJ STGJ SSGN STGI STGJ SSGN	LVVY TVVY IVVY IVTC NVVY LVVY IVVY	DYQÇ DYQF DYQF DYQF DYQF DYQÇ DYQF	QLLI LLI LLI LLI LLI LLI LLI LLI	AYKI AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTCC GTCC GTCC GTCC GTCC	YIM YIM YIM YLM YVM YIM YIM	KIAF KMAF KMAF KMAF KMSF KIAF KMTF KMSF	ESII QNII ESII QSII ESII ESII ENII	PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA	LNR LTR LAR LAR LTK LTR LTR	KVHNI KLQNI KLQNI KFQNI KFQNI KFQDI KFQDI	FQMI F F FQV- FQG(FQV- FQ	ECSI 	LQAK -QAK -RAK FQAN VQAK PQGE K	PAVPT PQVPS PSTPT PAEPP PSTPT RKRPG	SK SK SK TQ SK KR SK SK	L60
 P11686 P15783 P21841(Mouse) P22398 Q1XFL5 UPI0000E219B8 UPI00005A47C8 Q3MSM1 	400 280 276 270 268 261 259 206	1e-110 3e-74 6e-73 3e-71 1e-70 1e-68 6e-68 8e-52	1 1 1 1 1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4% 78.2% 83.4% 82.4%	81	RLA RLA RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH LSEH LQER LSEH LSEH	ILVT RVGT ADT IVGT IVGT RVGT RVGT RVGT	TATF TATF TATF TATF TATF TATF TATF TATF	'SIG 'SIG 'SIG 'SIG 'SIG 'SIG 'SIG 'SIG	STGI STGJ STGJ STGJ SSGI STGJ SSGI SSGI STGJ	LVVY TVVY IVTC IVTC NVVY LVVY IVVY NVVY IVVY	DYQÇ DYQF DYQF DYQF DYQÇ DYQF DYQF DYQF	2LLI	AYKI AYKI AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTCC GTCC GTCC GTCC GTCC GTCC	YIMI YIMI YIMI YLMI YVMI YIMI YVMI	KIAF KMAF KMAF KMSF KMSF KIAF KMTF	ESII QNII ESII QSMI ESII ENII QSMI	PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA	LLNR LTR LTAR LAR LTK LTR LTR LTR	KVHNI KLQNI KLQNI KFQNI KFQNI KFQDI KFQNI	FQMI F FQV- FQG FQV- FQ	ECS]] S QWK] 	LQAF -QAF -RAF FQAN VQAF PQGE F	PAVPI PQVPS PSTPI PAEPP PSTPI RKRPG PAVSI	SK SK SK TQ SK KR SK SK SK	L60
 P11686 P15783 P21841(Mouse) P22398 Q1XFL5 UPI0000E219B8 UPI00005A47C8 Q3MSM1 Q95M82 	400 280 276 270 268 261 259 206 85	1e-110 3e-74 6e-73 3e-71 1e-70 1e-68 6e-68 8e-52 3e-15	1 1 1 1 1 1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4% 78.2% 83.4% 82.4% 48.9%	81	RLA RLA RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH LSEH LQER LSEH LSEH	ILVT RVGT ADT IVGT IVGT RVGT RVGT RVGT	TATF TATF TATF TATF TATF TATF TATF TATF	'SIG 'SIG 'SIG 'SIG 'SIG 'SIG 'SIG 'SIG	STGI STGJ STGJ STGJ SSGI STGJ SSGI SSGI STGJ	LVVY TVVY IVTC IVTC NVVY LVVY IVVY NVVY IVVY	DYQÇ DYQF DYQF DYQF DYQÇ DYQF DYQF DYQF	2LLI	AYKI AYKI AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTCC GTCC GTCC GTCC GTCC GTCC	YIMI YIMI YIMI YLMI YVMI YIMI YVMI	KIAF KMAF KMAF KMSF KMSF KIAF KMTF	ESII QNII ESII QSMI ESII ENII QSMI	PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA PSLEA	LLNR LTR LTAR LAR LTK LTR LTR LTR	KVHNI KLQNI KLQNI KFQNI KFQNI KFQDI KFQNI	FQMI F FQV- FQG FQV- FQ	ECS]] S QWK1 	LQAF -QAF -RAF FQAN VQAF PQGE F	PAVPT PQVPS PSTPT PAEPP PSTPT RKRPG PAVST	SK SK SK TQ SK KR SK SK SK	L60
 P11686 P15783 P21841(Mouse) P22398 Q1XFL5 UPI0000E219B8 UPI00005A47C8 Q3MSM1 Q95M82 UPI000155C160 	400 280 276 270 268 261 259 206 85 84	1e-110 3e-74 6e-73 3e-71 1e-70 1e-68 6e-68 8e-52 3e-15 4e-15	1 1 1 1 1 1 1 1 1	100.0% 80.6% 78.7% 78.2% 80.2% 89.4% 78.2% 83.4% 82.4% 48.9% 83.6%	81	RLA RLA RLA RLA RLA RLA RLA RLA RLA	LSEH LSER PSER LSEW LSEH LSEH LQER LSEH LRGR	ILVT ADT ADT IAGT IVGT IVGT ADT ADT ADT	TATF TATF TATF TATF TATF TATF TATF TATF	'SIG 'SIG 'SIG 'SIG 'SIG 'SIG 'SIG	STGI STGI STGI SSGI SSGI STGI SSGI SSGI	LVVY TVVY IVTC NVVY LVVY IVVY IVVY IVVY	DYQQ DYQF DYQF DYQF DYQF DYQF DYQF DYQF	2LLI &LLI &LLI &LLI &LLI &LLI &LLI &LLI &LLI &LLI &LLI	AYKI AYKI AYKI AYKI AYKI AYKI AYKI AYKI	PAPO PAPO PAPO PAPO PAPO PAPO PAPO PAPO	GTCC GTCC GTCC GTCC GTCC GTCC GTCC GTCC	YIM YIM YIM YLM YVM YIM YIM YVM YVM	KIAF KMAF KMAF KMSF KIAF KMTF KMSF KMAF	PESII POSII POSII POSII POSII PESII PENII POSMI PENII	SLEA SLEA SLEA SLEA SLEA SLEA SLEA SLEA	LINR LITR LAR LAR LTK LTR LTR LTR LTR	KVHN] KLQN] KLQN] KFQN] KFQD] KFQD] KFQN] =====]	FQMJ F FQV- FQG(FQV- FQ FQ FQ	ECSI 	LQAF -QAF -RAF FQAN VQAF PQGE F YQAF	PAVPT PQVPS PSTPT PAEPP PSTPT RKRPG PAVST	SK SK SK TQ SK KR SK SK SK SK SK	L60

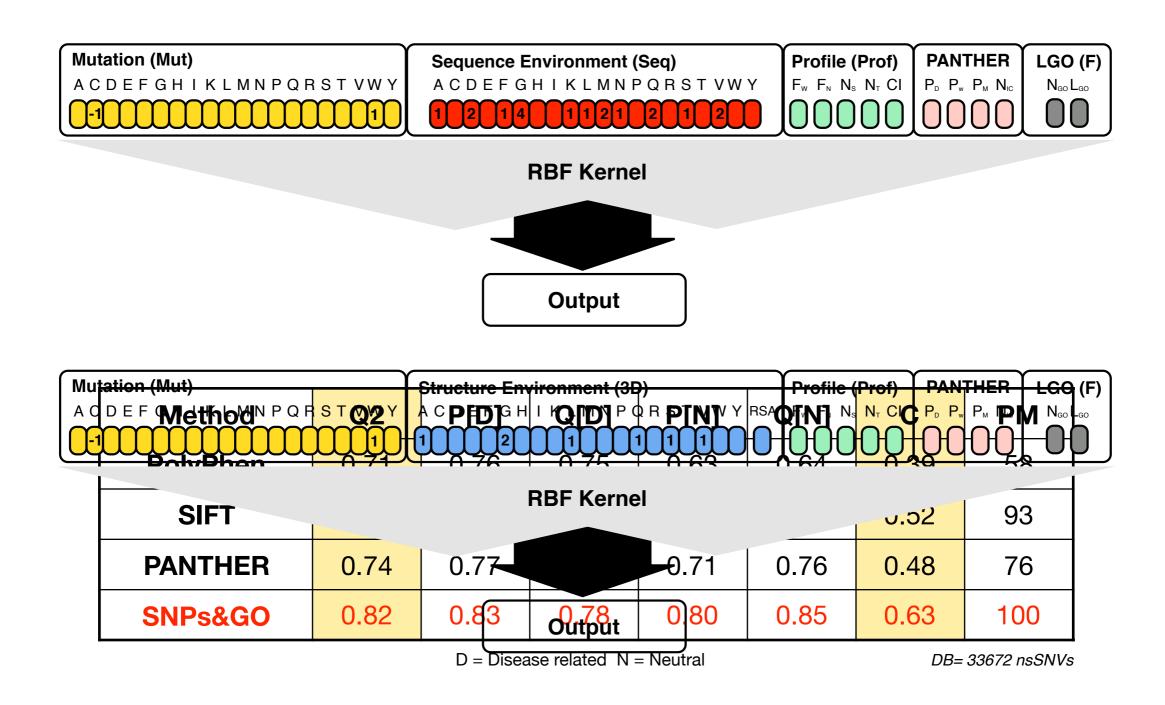
Sequence profile


The protein sequence profile is calculated running BLAST on the UniRef90 dataset and selecting only the hits with e-value $< 10^{-9}$.


The frequency distributions of the wild-type residues for disease-related and neutral variants are significantly different (KS p-value=0).

Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.

SNPs&GO input features

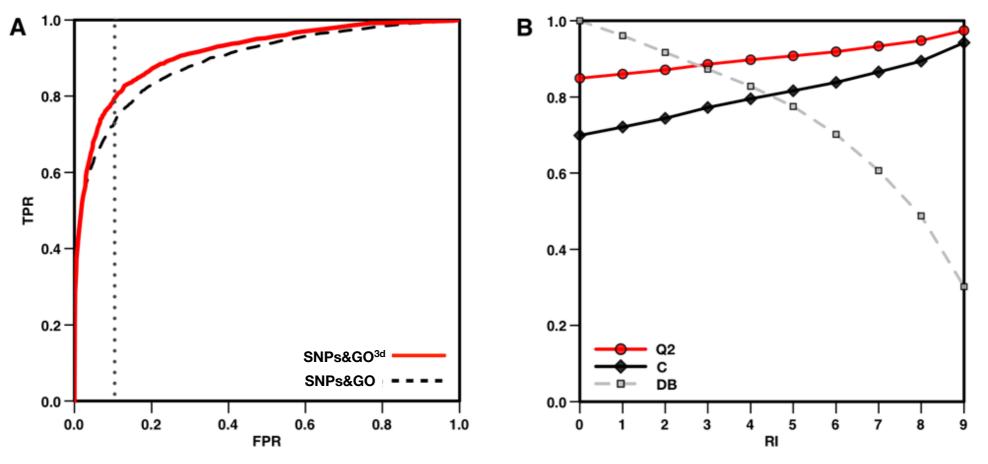

Sequence information is encoded in 2 vectors each one composed by 20 elements. The first vector encodes for the mutation and the second one for the sequence environment

Protein sequence profile information derived from a multiple sequence alignment. It is encoded in a 5 elements vector corresponding to different features general and local features

The GO information are encoded in a 2 elements vector corresponding to the number unique of GO terms associated to the protein sequences and the sum of the logarithm of the total number of disease-related and neutral variants for each GO term.

SNPs&GO performance

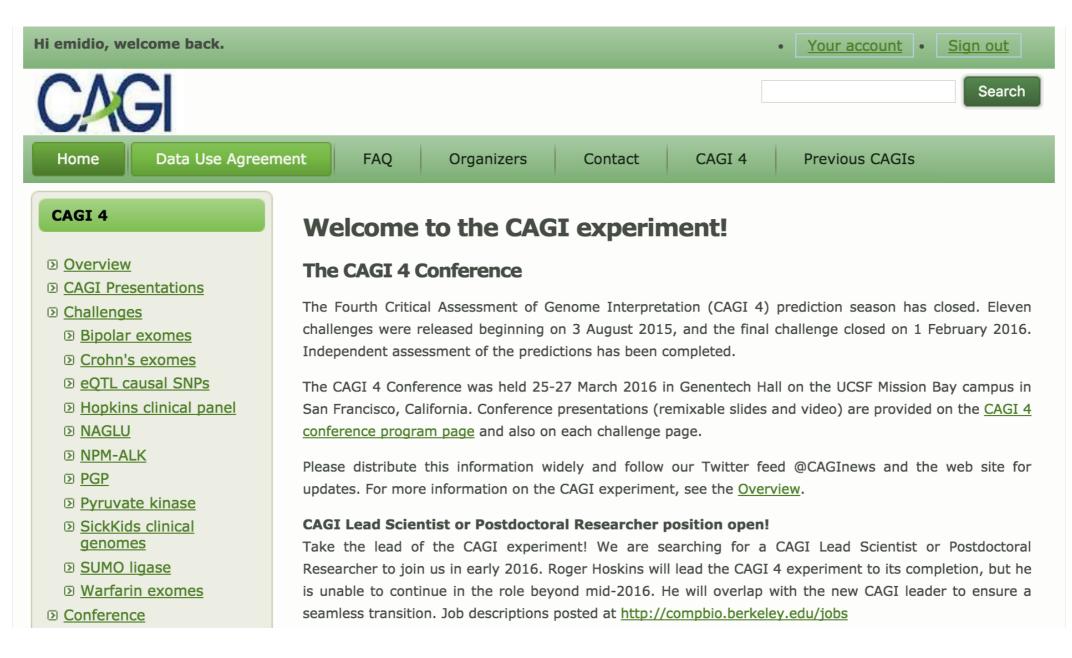
SNPs&GO results in better performance with respect to previously developed methods.



Calabrese et al. (2009) Human Mutation 30, 1237-1244.

Sequence vs Structure

The structure-based method results in better accuracy with respect to the sequencebased one. Structure based prediction are 3% more accurate and correlation coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.


	Q2	P[D]	S[D]	P[N]	S[N]	С	AUC
SNPs&GO	0.82	0.81	0.83	0.82	0.81	0.64	0.89
SNPs&GO ^{3d}	0.85	0.84	0.87	0.86	0.83	0.70	0.92

http://snps.biofold.org/snps-and-go

CAGI experiments

The Critical Assessment of Genome Interpretation is a community experiment to objectively assess computational methods for predicting the phenotypic impacts of genomic variation.

https://genomeinterpretation.org/

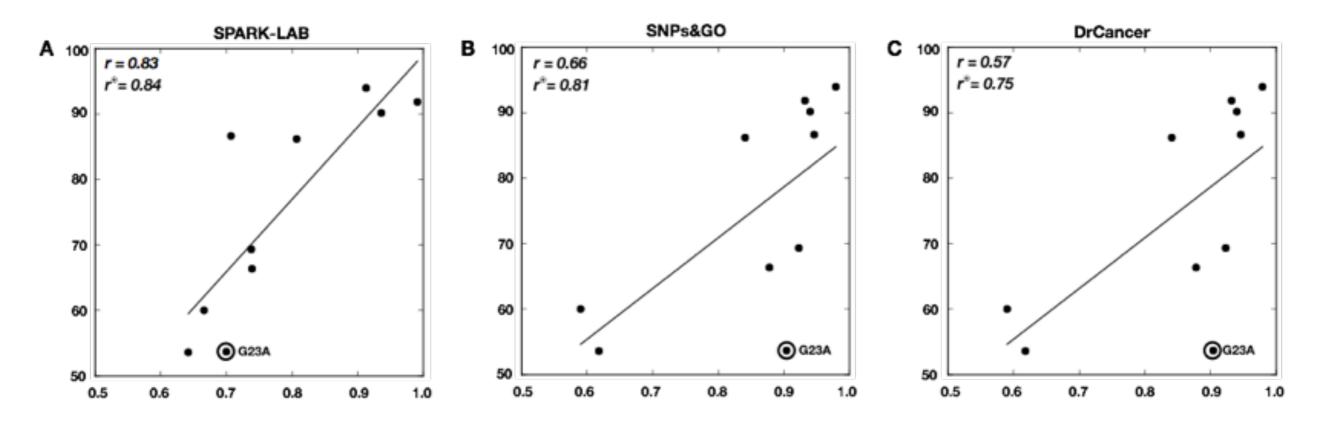
The P16 challenge

CDKN2A is the most common, high penetrance, susceptibility gene identified to date in familial malignant melanoma. p16^{INK4A} is one of the two oncosuppressor which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).

Challenge: Evaluate how different variants of p16 protein impact its ability to block cell proliferation.

Provide a number between 50% that represent the normal proliferation rate of control cells and 100% the maximum proliferation rate in case cells.

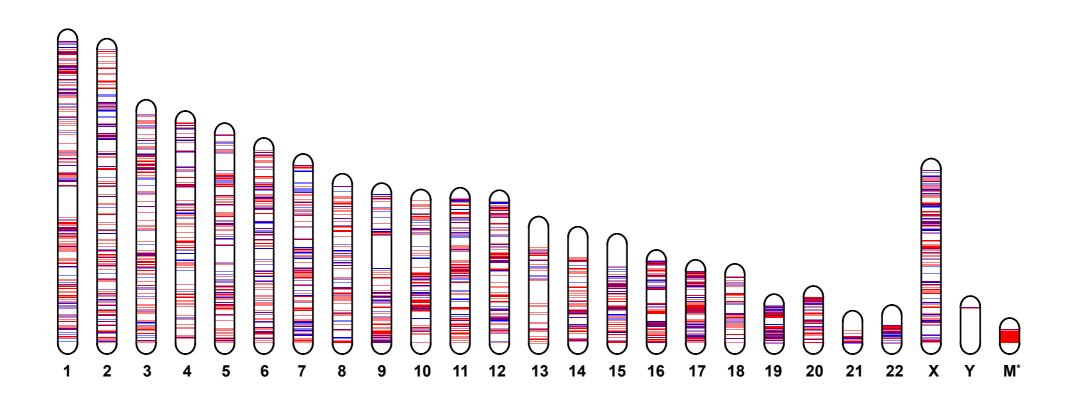
SNPs&GO prediction


Proliferation rates predicted using the output of SNPs&GO without any optimization.

Variant	Prediction	Real	Δ	%WT	%MUT
G23R	0.932	0.918	0.014	84	0
G23S	0.923	0.693	0.230	84	1
G23V	0.940	0.901	0.039	84	0
G23A	0.904	0.537	0.367	84	2
G23C	0.946	0.866	0.080	84	0
G35E	0.590	0.600	0.010	12	14
G35W	0.841	0.862	0.021	12	0
G35R	0.618	0.537	0.081	12	4
L65P	0.878	0.664	0.214	15	1
L94P	0.979	0.939	0.040	56	0

P16 predictions

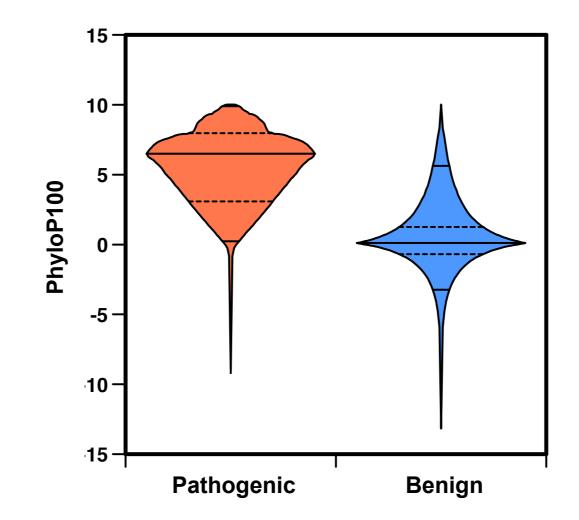
SNPs&GO resulted among the best methods for predicting the impact of P16INK4A variants on cell proliferation.


Method	Q2	AUC	МС	RMSE	r Pearson	r _{Spearman}	r KendallTau
SPARK-LAB	0.900	0.920	0.816	0.30	0.595	0.619	0.443
SNPs&GO	0.700	0.880	0.500	0.33	0.575	0.616	0.445
DrCancer	0.600	0.840	0.333	0.46	0.477	0.495	0.409

Capriotti et al. (2017) Human Mutations. PMID: 28102005.

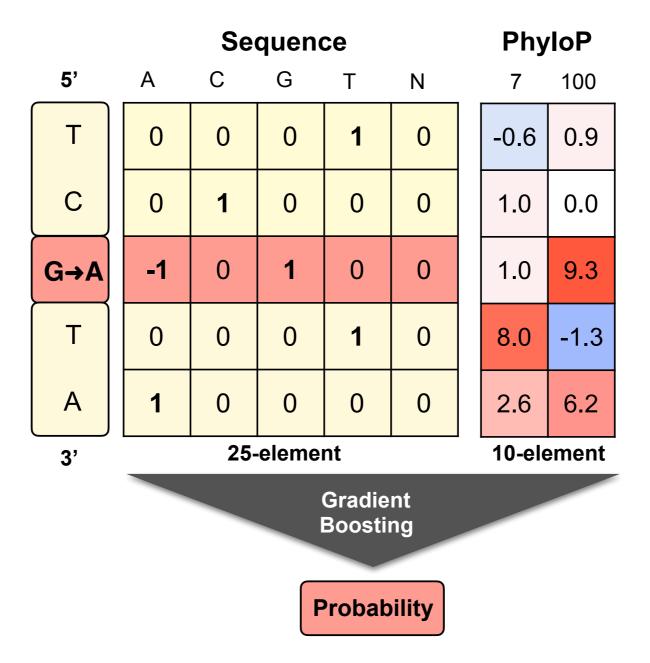
Whole-genome predictions

Most of the genetic variants occur in non-coding region that represents >98% of the whole genome.



Predict the effect of SNVs in non-coding region is a challenging task because conservation is more difficult to estimate.

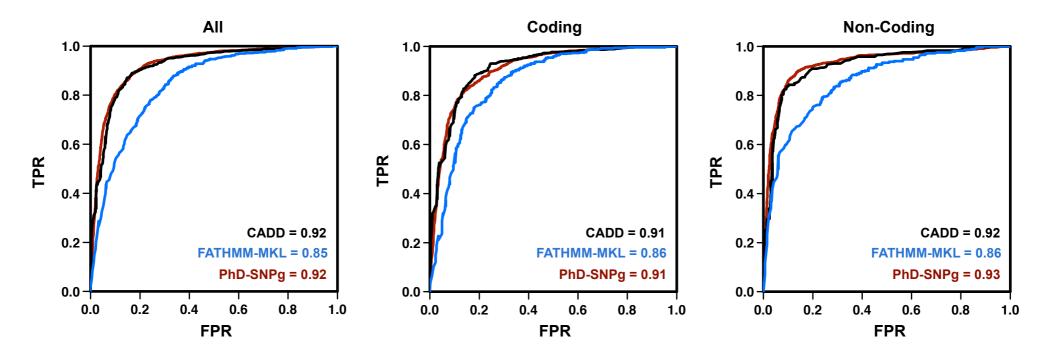
Sequence alignment is more complicated for sequences from non-coding regions.


PhyloP100 score

Conservation analysis based on the pre-calculated score available at the UCSC revealed a significant difference between the distribution of the PhyloP100 scores in Pathogenic and Benign SNVs.

PhD-SNP^g

PhD-SNP^g is a simple method that takes in input 35 sequence-based features from a window of 5 nucleotides around the mutated position.



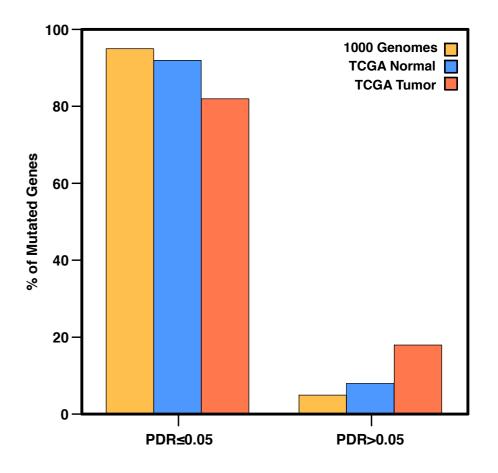
http://snps.biofold.org/phd-snpg/

Benchmarking

PhD-SNP^g has been tested in cross-validation on a set of 35,802 SNVs and on a blind set of 1,408 variants recently annotated.

	Q2	TNR	NPV	TPR	PPV	мсс	F1	AUC
PhD-SNP ^g	0.861	0.774	0.884	0.925	0.847	0.715	0.884	0.924
Coding	0.849	0.671	0.845	0.938	0.850	0.651	0.892	0.908
Non-Coding	0.876	0.855	0.911	0.901	0.839	0.753	0.869	0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.

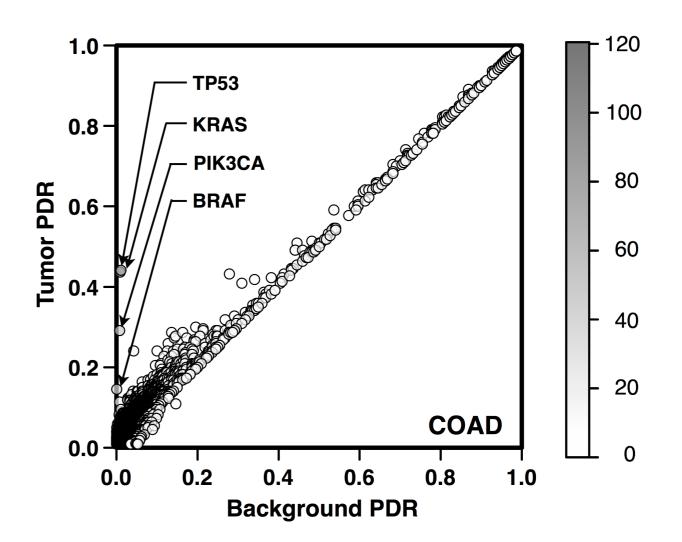

Mutation rates

The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA) normal and tumor samples shows an increasing number of genes with rare nonsynonymous SNVs.

Cohort	%Genes PDR≤0.05	%Genes PDR>0.05
1000 Genomes	95%	5%
TCGA Normal	92%	8%
TCGA Tumor	82%	18%

Tumor = Colon Adenocarcinoma

PDR = Gene Putative Defective Rate Fraction of samples in which a gene has ≥1 nonsynonymous variant with MAF≤0.5%


Gene prioritization

New method for cancer gene prioritization based on the comparison of the mutation rates in tumor samples vs normal and 1000 Genomes samples.

Gene	PDR[T]	PDR[B]	Score
KRAS	0.436	0.009	72.6
TP53	0.441	0.011	63.7
PIK3CA	0.291	0.007	39.4
BRAF	0.146	0.001	29.9

Colon Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor PDR[B] = Putative Defective Rate Background Background = Max (Normal and 1000 Genomes)

Acknowledgments

Structural Genomics @CNAG Marc A. Marti-Renom Davide Bau David Dufour Francois Serra

Computational Biology and Bioinformatics Research Group (UIB) Jairo Rocha

Division of Informatics at UAB Rui Tian Shivani Viradia Malay Basu Diego E. Penha

Helix Group (Stanford University) Russ B. Altman Jennifer Lahti Tianyun Liu Grace Tang Bologna Biocomputing Group Rita Casadio Pier Luigi Martell Giuseppe Profiti Castrense Savojardo University of Padova Piero Fariselli University of Camerino Mario Compiani

Mathematical Modeling of Biological Systems (University of Düsseldorf) Markus Kollmann

Other Collaborations

Yana Bromberg, Rutger University, NJ Francisco Melo, Universidad Catolica, Chile Sean Mooney, Buck Institute, Novato Cedric Notredame, CRG Barcelona Gustavo Parisi, Univesidad de Quilmes Frederic Rousseau, KU Leuven Joost Schymkowitz, KU Leuven

FUNDING

Startup funding Dept. of Pathology UAB NIH:3R00HL111322-04S1 Co-Investigator EMBO Short Term Fellowship Marie Curie International Outgoing Grant Marie Curie Reintegration Grant Marco Polo Research Project BIOSAPIENS Network of Excellence SPINNER Consortium

Biomolecules, Folding and Disease

http://biofold.org/

References

Hanahan D, Weinberg RA. (2011). Hallmarks of cancer: the next generation. Cell. 144: 646-74. PMID:21376230

Vogelstein B, et al. (2013). Cancer genome landscapes. Science. 339:1546-58. PMID: 23539594

Ding L, et al. (2014). Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet. 15: 556-70. PMID: 25001846;

Raphael BJ, et al. (2014). Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 6:5. PMID: 24479672

Lawrence MS, et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505:495-501. PMID: 24390350

Lawrence MS et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499: 214-8. PMID: 23770567

Khurana E, et al. (2013) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science. 342:1235587.PMID: 24092746

Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. (2011). Bioinformatics challenges for personalized medicine. Bioinformatics. 27; 1741-1748. PMID: 21596790

Tian R, Basu MK, Capriotti E. (2015). Computational methods and resources for the interpretation of genomic variants in cancer. BMC Genomics. 16 (Suppl. 8): S7. PMID: 26111056