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ABSTRACT

Motivation: Human single nucleotide polymorphisms (SNPs) are the

most frequent type of genetic variation in human population. One of the

most important goals of SNP projects is to understand which human

genotype variations are related to Mendelian and complex diseases.

Great interest is focused on non-synonymous coding SNPs (nsSNPs)

that are responsible of protein single point mutation. nsSNPs can be

neutral or disease associated. It is known that the mutation of only one

residue in aprotein sequencecanbe related to anumberof pathological

conditions of dramatic social impact such as Altzheimer’s, Parkinson’s

and Creutzfeldt-Jakob’s diseases. The quality and completeness of

presently available SNPs databases allows the application of machine

learning techniques to predict the insurgence of humandiseases due to

single point protein mutation starting from the protein sequence.

Results: In this paper, we develop a method based on support vector

machines (SVMs) that starting from theprotein sequence informationcan

predict whether a newphenotype derived froma nsSNPcanbe related to

agenetic disease inhumans.Using adataset of 21185 single pointmuta-

tions, 61% of which are disease-related, out of 3587 proteins, we show

that our predictor can reach more than 74% accuracy in the specific

taskof predictingwhethera singlepointmutationcanbedisease related

or not. Our method, although based on less information, outperforms

other web-available predictors implementing different approaches.

Availability: A beta version of the web tool is available at http://gpcr.

biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi

Contact: casadio@alma.unibo.it

1 INTRODUCTION

Single nucleotide polymorphisms (SNPs) are the most common

type of genetic variations in humans, accounting for �90% of

sequence differences (Collins et al., 1998). It is estimated that

SNPs occur approximately every 1000 bases in the overall

human population. The importance of SNPs in genetic studies is

due to different reasons. First, since most of SNPs are inherited from

one generation to the next, they characterize human evolution

(Goldstein and Cavalleri, 2005). Studying SNPs distribution in

different human populations can indeed lead to important consid-

erations about the history of our species (Barbujani and Goldstein,

2004; Edmonds et al., 2004). Finally SNPs can also be responsible

of genetic diseases (Ng and Henikoff, 2002; Bell, 2004). New

experimental techniques for large-scale identification of SNPs in

the human population (Wang et al., 1998) have increased expo-

nentially the consistence of the dbSNP database (http://www.ncbi.

nlm.nih.gov/SNP) (Sherry et al., 2001) that presently contains

�6 millions of validated cases (dbSNP 126). Recently several

databases, servers and tools have been developed in order to

study the effects of SNPs in Homo sapiens (Wang and Moult,

2001; Ramensky et al., 2002; Riva and Kohane, 2002; Ng

and Henikoff, 2003; Stenson et al., 2003; Conde et al., 2004;

Reumers et al., 2005; Karchin et al., 2005; Yue and Moult, 2006).

An important goal is the understanding of which variants are

disease-related. As a rule of thumb, mutations occurring in coding

regions may have a larger effect on the gene functionality. In this

paper we analyzed a particular class of SNPs that cause changes in

the deduced aminoacid sequence. These kinds of SNPs are called

non-synonymous coding SNPs (nsSNPs). The paper describes a

method to predict whether a given single point protein mutation

is related to a human disease or not.

2 MATERIALS AND METHODS

2.1 The mutation datasets

Our dataset is derived from the release 48 (Dec 2005) of the Swiss-Prot

database (Boeckmann et al., 2003). The classification of neutral and

deleterious polymorphisms was taken from Swiss-Prot. For each variant

Swiss-Prot lists, in a dedicated and OMIM-linked web page, the effect of

nsSNPs; in particular for the deleterious ones, pathological effects are also

described. We considered three datasets: the first for training/testing our

SVM system based on sequence information (HumVar), the second for

training/testing our SVM system based on profile information (HumVarProf)

and the third, to be used when testing the robustness of our predictor

(NewHumVar).

The protein dataset was retrieved from Swiss-Prot, with the following

constraints:

(1) the protein source is H.sapiens;

(2) the mutations are related to diseases or neutral polymorphisms

(no unclassified cases are considered);

(3) the data are relative to single point protein mutations (no deletion and

insertion mutations are taken into account).

After this filtering procedure, we ended up with a dataset consisting of

21 185 different single point mutations (12 944 of which are disease-related

and 8241 are described as neutral polymorphisms), obtained from 3587

protein sequences. These proteins have been grouped in clusters using�To whom correspondence should be addressed.
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the blastclust program in the BLAST suite (Altschul et al., 1997). Each
sequence was then aligned towards the nr95 data base (release June 2005).

Considering each sequence profile, we selected those mutations whose

frequency at a given position was different from 0 both for the wild-type

and mutated residue. This subset is called HumVarProf and com-

prises 8718 mutations (3852 of which disease-related and 4866 neutral

polymorphisms).

The third set of nsSNPs comprises single point protein mutations from

sequences of H.sapiens, which are reported in the last release of Swiss-Prot

(release 50 Jun 2006). This set was extracted from the Swiss-Prot database

by considering only new protein sequences that do not belong to any group of

the previous HumVar set. This procedure is carried out using blastclust
(length coverage equal to 0.9 and the score coverage threshold equal to

30) and provided a set of 935 single point protein mutations (149 of

which are disease-related and 786 are described as neutral polymorphisms)

from a total of 469 different proteins. The final HumVar and NewHumVar

sets are available at http://gpcr.biocomp.unibo.it/~emidio/PhD-SNP/.

2.2 The predictors

Our task is to predict whether a given single point protein mutation, due to

a nsSNP, is a neutral polymorphism or is involved into the insurgence of

a human genetic disease. In this respect the task can be cast as a classification

problem for the protein upon mutation. To address this issue we have

implemented different methods: a baseline predictor (ProbMeth) as a

benchmark to overperform, a single sequence SVM method (SVM-

Sequence) that discriminates disease-related mutations based on the local

sequence environment of the mutation at hand and a sequence-profile based

SVM (SVM-Profile). SVM-Sequence and SVM-Profile are cast in a unique

workflow with a decision tree method (HybridMeth) that allows adopting

either SVM-Sequence or SVM-Profile depending on the presence or absence

of a sequence profile of the sequence at hand, respectively (Fig. 1).

2.2.1 The probability-based method (ProbMeth) The baseline

predictor is built by considering the occurrence of a mutation of a pair of

residues (wild-type/mutated) in our dataset. For disease (D) and neutral

polymorphism (N) cases, we derive the likelihood ratio by computing the

M(D)i,j andM(N)i,j matrices, respectively. Each matrix has 20 · 20 elements;

the generic element Mi,j scores the occurrence of the mutation of residue

i into residue j and is computed as:

Mi;j ¼ f ði‚ jÞ/½f ðiÞ f ðjÞ�‚ ð1Þ

where f(i,j) is the frequency of occurrence of mutation of residue i into

residue j; f(i) is the frequency of occurrence of residue i in the data base

and f(j) is the frequency of occurrence of any mutation corresponding to

residue j in the database. By computing the maximum values of M(N)i,j and

M(D)i,j and comparing them, a given mutation of residue i into residue j is

predicted to be disease-related or not. When M(D)i,j > M(N)i,j the single

Fig. 1. Flow chart of the hybrid method (HybridMeth). For a protein sequence the method predicts whether a given mutation, (e.g. the residue E in position 10 is

mutated to A) is predicted to be related to a human disease or not. In the first step the sequence profile of the protein is built using the BLAST algorithm.

In the second step, the value of the sequence profile in the mutated position is evaluated. If both f10(E) 6¼ 0 and f10(A) 6¼ 0, prediction is computed as depicted on

the left side of the flow chart, with the SVM-Profile method, taking as input the ratio f10(E)/f10(A) and the number of the aligned sequences in the given

position. Otherwise, if f10(E) ¼ 0 and/or f10(A)¼ 0 SVM-Sequence discriminates between neutral polymorphism or disease. A representation of the two input

vectors of SVM-Sequence are also shown (see Material and methods section for details).
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point protein mutation is labeled as disease-related; when M(D)i,j � M(N)i,j
the mutation is predicted as neutral polymorphism.

2.2.2 The SVM-based method using sequence information (SVM-
Sequence) The first SVM classifies mutations into disease-related

(desired output set to 0) and neutral polymorphism (desired output set to

1). The decision threshold is set equal to 0.5. The input vector consists of

40 values: the first 20 (the 20 residue types) explicitly define the mutation by

setting to�1 the element corresponding to the wild-type residue and to 1 the

newly introduced residue (all the remaining elements are kept equal to 0).

The last 20 input values encode for the mutation sequence environment

(again the 20 elements represent the 20 residue types). Each input is provided

with the number of the encoded residue type, to be found inside a window

centered at the residue that undergoes the mutation and that symmetrically

spans the sequence to the left (N-terminus) and to the right (C-terminus) with

a length of 19 residues (Capriotti et al., 2005a). For SVM implementation we

use LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/) with a RBF kernel

function K(xi,xj) ¼ exp(�G kxi � xjk2).

2.2.3 The SVM-based method using profile information (SVM-
Profile) The second SVMmethod (SVM-Profile) classifies mutations into

disease and neutral polymorphism taking as input only a vector of 2 elements

derived from the sequence profile. This is computed from the output of the

BLAST program (Altschul et al., 1997), running on the nr95 database

(E-value threshold ¼ 10�9, number of runs ¼ 1) as obtained with cd-hit

program available at http://bioinformatics.org/cd-hit/ (Li et al., 2001). The
first input element is the ratio between the frequencies of wild-type versus

that of the mutated residue in the sequence mutated position and the second

element is the number of aligned sequences with respect to the mutation at

hand. The software and the kernel used for this SVM implementation are as

described above.

2.2.4 The hybrid method (HybridMeth) Our hybrid method

(HybridMeth) is based on a decision tree with the SVM-based classifier

described above (SVM-Sequence) coupled to SVM-Profile trained on

sequence profile information (Fig. 1).

HybridMeth comprises the following steps:

(1) for a given protein, its sequence profile is built according to the

procedure detailed above. From this we evaluate both the frequency

of the wild-type [fk(wt)] and mutated [fk(mut)] residues at position k.

Thenormalization factor is thenumberof sequences in thealignment at

a given position;

(2) when the frequency of the wild-type [fk(wt)] and mutated [fk(mut)]

residues at position k are different from 0, the value of fk(wt)/fk(mut)

is computed and in conjunction with the total number of aligned

sequences in position k is provided to the SVM-Profile method trained

on the sequence profile HumVarProf set;

(3) when no profile is returned at a given position for either wild-type or

mutated residue, fk(wt)¼0or fk(mut)¼0.Theprediction is performed

with the SVM-Sequence method, as described above.

2.3 Scoring the performance

All the results obtained with our SVM methods are evaluated using a

cross-validation procedure on the HumVar dataset for SVM-Sequence

and on HumVarProf for SVM-Profile. The reported data for the classification

task performed by the SVM methods are obtained adopting a 20-fold cross-

validation procedure in such a way that the disease-related and neutral

polymorphism mutation ratio corresponds to the original distribution of

the whole set. Furthermore, all the proteins in the HumVar and HumVarProf

sets are clustered according to their sequence similarity using the blastclust

program in the BLAST suite (Altschul et al., 1997), by adopting the default

value of length coverage equal to 0.9 and the score coverage threshold equal

to 1.75. We kept the mutations detected on the same cluster of protein

sequences in the same training set to prevent an overestimation of the results.

Performance is scored with several measures. For sake of completeness

here we review the ones adopted in this paper. The efficiency of the predictor

is scored using the statistical indexes defined in the following. The overall

accuracy is:

Q2 ¼ p/N‚ ð2Þ

where p is the total number of correctly predicted mutations and n is the total

number of mutations.

The correlation coefficient C is defined as:

CðsÞ ¼ ½pðsÞnðsÞ � uðsÞoðsÞ�/D‚ ð3Þ

where D is the normalization factor

D ¼ f½pðsÞ þ uðsÞ�½pðsÞ þ oðsÞ�½nðsÞ þ uðsÞ�½nðsÞ þ oðsÞ�g1/2: ð4Þ

For each class s (D and N, for disease and neutral polymorphism,

respectively); p(s) and n(s) are the total number of correct predictions

and correctly rejected assignments, respectively, and u(s) and o(s) are the

numbers of under and over predictions.

The coverage for each discriminated class s is evaluated as:

QðsÞ ¼ pðsÞ/½pðsÞ þ uðsÞ�‚ ð5Þ

where p(s) and u(s) are the same as in Equation (3). The probability of correct

predictions P(s) (or accuracy of s) is computed as:

PðsÞ ¼ pðsÞ/½pðsÞ þ oðsÞ�‚ ð6Þ

where p(s) and o(s) are the same as in (3) (ranging from 1 to 0).

Finally, it is very important to assign a reliability score to each prediction.

With the output O(s) this is obtained by computing:

RIðsÞ ¼ 10*absðOðsÞ � tÞ*wðsÞ‚ ð7Þ

where t is threshold and w(s) is the weight of the set relative to the class s.

Other standard scoring measures (Baldi et al., 2000), including the area

under the ROC curve and the true positive rate [TPR ¼ Q(s)] at 5% of false

positive rate [FPR¼ 1 � P(s)] are also reported.

3 RESULTS AND DISCUSSION

3.1 The effect of the evolutionary information

Information derived from sequence profile is important for detecting

mutations that affects human health (Ramensky et al., 2002).

Prompted by this observation we undertake a statistical analysis

of our data set to capture relevant features in order to discriminate

among neutral and disease-related nsSNPs. After a careful search

we found that the best scoring discriminating function is the ratio

between the frequency of wild-type [fk(wt)] versus mutated [fk(mut)]

residues in the sequence profile, after alignment towards the nr95

data base. This function as shown in Figure 2 is to some extent

discriminative between neutral and disease-related mutations.

Unfortunately our data base of mutations presently contains only

41% of residues for which it is possible to compute a sequence

profile for both wild-type and mutated residues. The remaining

portion either cannot be aligned (15%) or has alignments for either

residue (44%). This obviously prevents from computing the align-

ment based-scoring function for any type of mutations. The distri-

bution of Figure 2 is unaffected when all the human proteins from

the dataset of sequences are removed. This suggests that our func-

tions are evaluated from sequence profiles computed mainly

considering orthologous proteins (data not shown).

Also from Figure 2 it is evident that given our data base of

mutations (for which only 8718 out of 21 815 mutations are
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endowed with a sequence profile) both disease-related and neutral

mutations are similarly present at a given position with only few

exceptions [at very low number of sequences (<50) or very high

(950) in the alignment] and that the scoring function is really dis-

criminative at specific values, depending on the number of aligned

sequences at a given position.

To overcome these difficulties we implemented a decision tree

method that eventually takes advantage of the ratio-based scoring

function only when available from sequence profile (Fig. 1). Our

method is therefore based on the notion that any mutation starting

from the residue sequence of a given protein may by predicted in

relation to the possible effect of being or not disease-related. In any

case, the mutation can be predicted with a SVM classifier that takes

as input a window centered on the specific mutation and a local

environment for the mutation at hand (SVM-Sequence). Alterna-

tively, SVM-Profile is activated when the ratio between the fre-

quency of wild-type [fk(wt)] and mutated [fk(mut)] residue can be

computed. In order to regularize the prediction this arm of the

decision tree is trained/tested on the scoring function value as

returned after evaluating fk(wt) and fk(mut) (both are required to

be different from 0) and the number of sequence in the alignment.

This procedure is optimized considering sequence profiles with

different E-value threshold and more than one run for BLAST

program.

The best results that are obtained when the E-value threshold is

set to 10–9 and for one run of BLAST, reach an overall accuracy of

70% and a Matthew’s correlation coefficient of 0.39 (Fig. 3).

3.2 The predictors at work

Our previous work indicated the role of sequence environment in

improving classification with SVM based methods (Capriotti et al.,
2005a,b). SVM-Sequence takes advantage of information as derived

from the environment (see Materials and methods) where the muta-

tion occurs. Coupling the predictions provided by SVM-Sequence

and SVM-Profile we can predict any mutation endowed or not with

sequence profile (HybridMeth).

The prediction of SVM-Sequence and HybridMeth are compared

with a simple method based only on probabilistic rules (ProbMeth).

In Table 1 the performance of the three different methods is reported

on the whole dataset of mutations (HumVar) and adopting a cross

validation procedure.

SVM-Sequence is, as expected, more accurate than ProbMeth.

The overall accuracy of prediction (Q2) increases of 8% points

when SVM-Sequence is compared with ProbMeth (Table 1).

Also and more importantly the correlation coefficient C increases

up to 0.21. In conclusion, the first two methods scored in Table 1

show a good accuracy in the prediction of the disease-related

mutations [Q(D)] and are less accurate when predicting neutral

polymorphisms [Q(N)].

Merging the prediction of SVM-Sequence with that obtained

with SVM-Profile (the HybridMeth predictor) results into an

overall accuracy of 0.74 and a correlation coefficient of 0.46.

The main reason of this improvement is related to the increasing of

the accuracy in the prediction of neutral polymorphisms [Q(N)]. The

overall Q2 accuracy and the correlation coefficient are computed as a

function of the reliability index (RI) in Figure 4.

This identifies a relationship between the reliability value and the

HybridMeth predictor accuracy. The value of the reliability index

and its relationship with the prediction accuracy may help in select-

ing which mutations are more dangerous for human health. The

accuracy of our predictor is also represented in Figure 5. For both

SVM-Sequence and HybridMeth, the value of the TPR is reported

f(wt)/f(mut)
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Fig. 2. Distribution of neutral polymorphism and disease-relatedmutations at

different values of the ratio between the frequencies of wild-type andmutated

residue in the sequence profile [(f(wt)/f(mut)]. These data are calculated over

the HumVarProf set comprising 8718 mutations (3852 of which are disease-

related and 4866 are described as neutral polymorphisms).
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Fig. 3. Accuracy (Q2) and correlation (C) of the SVM-Profile method as a

function of the reliability index (RI) of the prediction [Equation (7)]. DB is the

fraction of the HumVarProf dataset with RI values higher or equal to a given

threshold.

Table 1. Performance of our different methods on the HumVar set

Method Q2 P(D) Q(D) P(N) Q(N) C

ProbMeth 0.62 0.63 0.91 0.56 0.18 0.13

SVM-Sequence 0.70 0.71 0.84 0.65 0.46 0.34

HybridMeth 0.74 0.80 0.76 0.65 0.70 0.46

DandN: indexes are evaluated for single point proteinmutation related to human disease

(D) and neutral polymorphism (N), respectively; for the definition of the different

indexes see the Material and methods section.
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as a function of the FPR (ROC curve). It is evident that the decision

tree method by including profile information increases its ROC

curve area from 0.73 to 0.79. According to our results when we

accept a FPR equal to 5% the decision tree method overperforms

SVM-sequence by 10% points (Figure 5).

The analysis of the accuracy of HybridMeth as a function of the

chemico-physical properties indicates that the mutations involving

charged/charged, apolar/apolar mutations score lower than those

involving other swaps (Table 2). This suggests that changes in

the class of apolar and charged residues are more difficult to predict

and that more information than the local sequence environment and

profile is necessary for a high predictive score.

3.3 Comparison with other methods

In this section, we compare our method with other web available

predictors. The web tools considered are PolyPhen (Ramensky

et al., 2002) and SIFT (Ng and Henikoff, 2003). The first one is

also based on a decision tree and takes into account several informa-

tion as derived by structural parameters, functional annotations and

evolutionary information; the second one is based only on sequence

homology considering residues conserved in a given protein family.

Differently from HybridMeth these predictors sometimes cannot

provide results. This fact occurs when there is no functional or

evolutionary information for a given protein. In our case we always

give a prediction, thank to the combined action of both methods

included in the decision tree.

In Table 3 we report scoring indexes for the methods as compared

to the one described in this paper. It should be noticed that only

HybridMeth is scored by adopting a real cross validation procedure

on our HumVar dataset.

The performances reported indicate that PolyPhen and

HybridMeth are more accurate than SIFT. The HybridMeth method

reaches the maximum value of accuracy (0.74) among the

three methods, gaining 7% with respect to SIFT. PolyPhen

is scoring similarly to our method, although only HybridMeth is

the only performing predictions for every mutations of

dataset, being the simplest in terms of amount of information

required starting from the protein sequence. PolyPhen and

SIFT do not predict about 1500 mutations since more specific

functional or evolutionary information is requested for the mutation

at hand.
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Fig. 4. Accuracy (Q2) and correlation (C) of the hybridmethod (HybridMeth)

as a function of the reliability index (RI) of the prediction [Equation (7)].

DB is the fraction of the HumVar dataset with RI values higher or equal to a

given threshold.
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Fig. 5. ROC curve of HybridMeth and SVM-Sequence obtained plotting

the False Positive Rate [FPR ¼ 1 � P(s)] versus the True Positive Rate

[TPR ¼ Q(s)].

Table 2. Q2 accuracy as a function of the mutated residue type

wt\mut Polar Apolar Charged

Q2 C DB Q2 MC DB Q2 MC DB

Polar 0.76 0.47 19 0.73 0.44 12 0.81 0.52 14

Apolar 0.76 0.46 12 0.67 0.33 14 0.82 0.48 3

Charged 0.73 0.37 19 0.73 0.39 2 0.66 0.33 5

The accuracy (Q2)and the correlation (C)of agivenmutation are reported as a functionof

the mutated residue type, classified according to chemico-physical properties. Rows

account for the wild-type residue (wt), while the column positions define the mutated

residues in themutant proteins (mut). DB is the percentage of a givenmutation type in the

HumVar dataset.

Table 3. Comparison of our HybridMeth with other web available methods

Method Q2 P(D) Q(D) P(N) Q(N) C PM%

PolyPhena 0.72 0.62 0.72 0.80 0.73 0.44 93

SIFTb 0.67 0.76 0.67 0.56 0.66 0.33 94

HybridMethc 0.74 0.80 0.76 0.65 0.70 0.46 100

Taken from web server:
ahttp://www.bork.embl-heidelberg.de/PolyPhen/
bdownloaded fromhttp://blocks.fhcrc.org/sift/SIFT.html and run locally. Performance is

scored on HumVar.
cOnly HybridMeth is scored with a 20-fold cross-validation procedure on 21 185

mutations. For legend see also Table 1. PM is the percentage of predicted mutations.
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3.4 The prediction of disease-related mutations on

new H.sapiens variants

In order to test the robustness of our HybridMeth method and

compare it to the other two methods available on the web, we select

a set of single protein mutations relative to H.sapiens, which have

been included in the last version of Swiss-Prot. From this set of

proteins, we selected only those sequences that show a low level

(<30%) of sequence identity with proteins in HumVar dataset. This

procedure is performed using the blastclust program (Altschul et al.,
1997), considering only new sequences that do not fall into any

cluster derived by the HumVar dataset. By this we predict whether a

given mutation is disease-related or not, using our machine learning

approach. When scoring our predictions we also compare with

PolyPhen and SIFT (Table 4). Only our method is predicting all

the new mutations, with a score that overcomes the best performing

one. By this we like to conclude that the decision tree-based new

method described in this paper, although far from being perfect,

takes advantage of all the possible information only from the protein

sequence and by this can discriminate between a disease-related and

neutral polymorphism.
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