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ABSTRACT: A computational approach is essential whenever
the complexity of the process under study is such that direct
theoretical or experimental approaches are not viable. This is the
case for protein folding, for which a significant amount of data are
being collected. This paper reports on the essential role of in silico
methods and the unprecedented interplay of computational and
theoretical approaches, which is a defining point of the
interdisciplinary investigations of the protein folding process.
Besides giving an overview of the available computational
methods and tools, we argue that computation plays not merely
an ancillary role but has a more constructive function in that
computational work may precede theory and experiments. More
precisely, computation can provide the primary conceptual clues
to inspire subsequent theoretical and experimental work even in a case where no preexisting evidence or theoretical frameworks
are available. This is cogently manifested in the application of machine learning methods to come to grips with the folding
dynamics. These close relationships suggested complementing the review of computational methods within the appropriate
theoretical context to provide a self-contained outlook of the basic concepts that have converged into a unified description of
folding and have grown in a synergic relationship with their computational counterpart. Finally, the advantages and limitations of
current computational methodologies are discussed to show how the smart analysis of large amounts of data and the
development of more effective algorithms can improve our understanding of protein folding.

Because proteins are only marginally stable under
physiological conditions,1−3 moderate fluctuations may

cause deviations from the expected folding process (misfold-
ing). In addition, it is becoming clear that prolonged exposure
of hydrophobic surfaces during intermediate stages is
responsible for pathogenic effects associated with protein
aggregation,4−6 whereas knowledge of the conformational
dynamics of free proteins sheds light on the conformational
changes of the molecule upon interaction with ligands.7,8

Thus, there is an urgent need to elucidate the dynamical
mechanisms of folding and misfolding not only for clarifying
the molecular basis of neurodegenerative diseases but also for
boosting the constructive approach to protein science and
polymer science. The new frontier in these areas includes
modulating the folding dynamics of a natural protein,9 the
design of novel proteins,10,11 and the synthesis of nonbiological
foldamers.12

From a methodological point of view, the traditional
modeling activity in terms of known physicochemical principles
has been complemented by intensive processing of large
amounts of raw data [crystallographic, thermodynamic, and
kinetic or from nuclear magnetic resonance (NMR) and
imaging techniques] because of the intrinsically statistical
nature of the vast majority of the current investigations. This
has brought about the massive development of computational
methods, instrumental in processing the raw experimental data

thus giving rise to further inferences, for shedding light on new
correlations and possibly designing effective predictive
methods. The resulting intermediate-level data, in their turn,
provide the basic ingredients and insights for higher-level
syntheses that result in general models, where established
principles13 and new heuristics14 shape a deeper understanding
of folding−misfolding processes. As a matter of fact, for systems
with a complexity comparable to that of proteins, our
comprehension is more realistically based on heuristics or
qualitative “lessons” rather than on new quantitative laws.15

Computational and bioinformatics methodologies find
themselves midway between experimental work and the more
abstract activity of model building. This implies that besides
changing our interpretation of the raw data,16 they are expected
to provide the basic elements that fuel more far-reaching
modeling activity. However, one should not overlook the
reverse influence. By way of example, hierarchical or modular
models of the folding dynamics stimulate construction of new
tools and call for new strategies for the organization of the
existing data such as, for example, the introduction of searching
strategies based on genetic algorithms and the construction of
combinatorial libraries.17
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To make the reader more familiar with the close
interrelationships among theory, experiment, and computation,
we first introduce the main physical and computational
background notions in protein folding and summarize the
recent evolution of the main theoretical models. We then focus
on the main topic of this review, i.e., the large-scale
organization of the data and the variety of computational
tools designed to process them to address the threefold
question posed by the protein folding problem: thermody-
namic, kinetic, and computational.18 In the last part of this
paper, we describe the computational tools devised to cope
with protein misfolding phenomena. In the concluding remarks,
we comment on the noticeable changes induced in protein
science in the era of big data.19 The intermingled development
of theory and computation is viewed as a direct consequence of
the very fact that scientists have to manage, visualize, and
interpret a deluge of experimental and computational data.

■ BASIC CONCEPTS OF PROTEIN FOLDING THEORY
In 1973, Anfinsen’s paper20 shifted interest away from the
chemistry of disulfide bridges, and the conformational dynamics
of proteins began to be examined through the eyes of the
polymer physicist or the computer scientist.
Proving the uniqueness (stability) of the native structure

entailed a further change in perspective in that one stopped
thinking in terms of atomic coordinates. Actually it was argued
that the relevant pieces of information for folding must reside
in the sequence or, in logical terms, sequence → native
structure. Since then, this has been known as the Anfinsen
thermodynamic hypothesis. In the following sections that
summarize the various models of protein folding, we shall see
that an amended version of Anfinsen’s hypothesis, a kind of
extension to the realm of kinetics, is frequently invoked in the
form sequence → folding kinetics. Clearly, this amounts to
assuming that sequence also determines the properties of the
basin of attraction associated with the native structure. This is
at the core of the intriguing merger of two main lines of
research concerning protein structure prediction and the
investigation of protein folding dynamics.21

Going beyond the traditional chemical approach was also
dictated by the excessive number of alternative conformations
involved. The astronomical number of local minima in
conformational space and the ensuing impossibility of
exhaustive exploration are usually termed Levinthal’s paradox.22

Indeed, it has been shown that even a simple description of the
protein folding based on the hydrophobic/hydrophilic (HP)
model on a cubic lattice is NP-complete.23 On the whole, the
sequence-to-structure relationship and the elucidation of the
folding events are such challenging problems that they are
ranked among the most important scientific topics of the third
millennium.24

Levinthal’s paradox and Anfinsen’s thermodynamic hypoth-
esis, through their basic features, would seem to be in conflict.
On the one hand, there is a need to constrain the folding
process along a precise path (kinetic control), to ensure
convergence toward the native state within a finite time. On the
other hand, the dominant role of the final conformation makes
the intervening path relatively unimportant (thermodynamic
control) so that parallel alternative paths are admissible. These
conflicting requirements become consistent within the context
of the landscape theory of protein folding, in which both kinds
of control are admitted.25,26 Actually, the current view holds
that parallelization is more sensible in the early stage of folding,

whereas the process is more sequential-like in the later
stages.27,28

The Physicist’s View of Protein Folding. What matters
within the context of this review is that the essential
methodological contribution of physics is a rich tradition of
methods for taming complexity and building up minimal (e.g.,
coarse grained) models.29

Protein physics introduced a mode of dealing with proteins
forgetting the details of the biochemical machinery. This was
paralleled by the so-called connectionist trend in cognitive
sciences30,31 where, to clarify the working mechanisms of the
brain, very simple artificial models (artificial neural networks, in
short ANNs) comprising simple units (neurons) and simple
connections were devised and investigated.32 In a similar vein,
in protein science, the intricacies of biopolymers were
condensed into the simple language of bead and string models
borrowed from polymer physics33 or in the even more
skeletonized framework of Ising models,34 the prototypical
pictures of complex glassy systems,35 which introduced the
concept of frustration into the modern view of protein folding.
The wide applicability of notions such as frustration or

topology reminds us of the basic intuition of synergetics,
namely the existence of basic principles shared by many kinds
of different systems (including proteins) irrespective of the
specific nature of their elementary units.36 More precisely, the
slaving of variables, emergence of order parameters, and
instability36 have a precise counterpart in protein science in
the concepts of hierarchy, reaction coordinate(s), and transition
state, respectively. The comprehensive synthesis of these
features is currently provided by statistical descriptions in
terms of rugged energy landscapes (see Figure 1).37

The hierarchical nature of the energy landscape is reflected in
the hierarchy of the time scales of the concurrent processes
involved38 and introduces the natural distinction between
slaved (fast) and slaving (slow) variables.39 Slaving of variables
allows substantial simplification of the interdependent dynam-
ics of coupled state parameters36 in that the contribution of fast
variables can be averaged out. As we shall see in Theoretical
Models for Protein Folding, many folding models take
advantage of this general property whenever structural elements
at low levels in the hierarchy of protein structures are
considered to evolve on shorter time scales than higher-level
motifs (e.g., preformed helices, fragments of secondary
structure elements corresponding to the so-called foldons,40,41

Figure 1. Typical funnel-like free energy profile for a two-state protein
folding process from the unfolded (U) to the native (N)
conformation.

Biochemistry Current Topic

dx.doi.org/10.1021/bi4001529 | Biochemistry XXXX, XXX, XXX−XXXB



or in general the initiation sites of folding42,43) that drive the
folding dynamics or feature in recognition processes in
unstructured proteins.44

In protein folding studies, Kramers’ kinetic theory for the
barrier crossing of a Brownian particle45 provides a useful
paradigm for modeling a generic two-state process, i.e., the
transition from the unfolded state (U) to the native state (N).
Its major merit is to provide the simplest combination of the
slaving principle, the notion of a reaction coordinate, and
instability. In more refined theories, complete slaving of solvent
(where relaxation of the solvent is assumed to be infinitely
faster than the kinetics of the reaction coordinate) must be
supplanted by more realistic pictures of solvent−protein
coupling,46 to account for the cooperative behavior of
proteins47 and environmental changes48 and to provide a
unified description of cold and warm denaturation.49

Deviations from Kramers kinetics and chevron plot rollovers
reveal subtle effects of the multidimensionality of the energy
landscape50 and the attending multiple intramolecular inter-
actions that set in during the folding of the protein (resulting in
ruggedness, gating, and barrier fluctuations,51 internal friction,52

or multiple-barrier crossing53) or the coupling with the
hydration shell that mediates the influence of the bulk solvent.
Kramers’ theory and diffusion theory are also used within

different contexts to estimate the rate of elementary folding
processes such as the closing up of β-sheets,54 the collision of
elements of secondary structures,55,56 or simply formation of an
intramolecular contact.57,58 This is in accord with a noteworthy
suggestion from Ising-like descriptions (and also the tenets of
synergetics) that both local folding (secondary structure
formation) and global folding seem to obey the same basic
principles.59

The Computer Scientist’s Toolboox. A pondered
assessment of the computer science methods that are currently
applied in the protein folding literature would require a review
of its own. Therefore, we only mention in passing that a frontal
attack upon Levinthal’s paradox aims to enhance brute-force
computational strategies relying on parallel supercomputing
architectures or using personal computing clusters,60,61

although extensive number crunching cannot yet solve the
time-demanding problem of folding a protein, though some
interesting progress has been made recently.62,63 Similar
limitations also affect approaches based on low-cost worldwide
parallel distributed computing (e.g., the Folding@Home
project) involving thousands of contributors.62

The straightforward implementation of a mechanistic view of
protein dynamics is represented by molecular dynamics (MD)
simulations61,64 and all its variants devised to cover a variety of
time scales involved in folding.65

We prefer to turn our attention to a more accurate analysis of
the impacting influence of Artificial Intelligence and in
particular of some machine learning strategies. The story
begins when the ANNs were applied to cope with the problem
of predicting native protein structures directly from sequence
(early 1990s). The efficacy of the machine learning approach is
such that ANNs have definitely supplanted the earlier
algorithms based on explicit statistics21,66 and are currently
used as standard tools.67,68

The essential novelty with respect to traditional computer
programming is that the machine learning approaches are able
to extract statistical information about the unknown sequence-
to-structure mapping from a data set of examples in which
sequences are associated with known, determined experimen-

tally, native structures. From the description given above, it is
clear that ANNs are equivalent to the implementation of a local
version of Anfinsen’s hypothesis (local sequence → local native
secondary structure).
Although helical structures, as expected, can be well

predicted,66,69 helices can be ranked according to their
sensitivity to long-range forces that makes them context-
dependent. Such a distinction is crucial for the detection of the
initiation sites (foldons) of the folding process that correspond
to maximally context-independent helical stretches.40

These empirical findings have important implications for the
general theory of folding. More precisely, two decades after
their inception, structural studies based on machine learning are
now playing a remarkable role in the process of unification of
the theories of protein folding. To clarify this point, let us recall
that, at the outset of protein science, structure predictions and
the investigation of stability and folding pathways evolved into
two separate areas of research.21 However, in recent years, a
fruitful dialogue between the two fields has been fostered by the
finding that secondary structures can be quite successfully
predicted by means of machine learning techniques, even
though ANNs take into account only local interactions, but the
most intriguing outcome is that progress in the application of
the ANNs has facilitated the development of new folding
models. A case in point is the foldon diffusion−collision model
(see FDC model discussed in Theoretical Models for Protein
Folding) in which ANNs and the Kramers approach merge in a
single explanatory scheme.
In summary, the main implications of the successful results of

machine learning approaches to the modeling of folding are as
follows. (i) Simple structure prediction methods are able to
circumvent Levinthal’s paradox. (ii) They support the central
role of a hierarchical mechanism in the formation of protein
structures. (iii) The success of the FDC model corroborates the
formulation of the “kinetic” Anfinsen hypothesis (sequence →
folding kinetics). (iv) The fundamental role of secondary
structures dictated by local interactions has been clearly
recognized. (v) The existence of early embryos of native
helical structures (foldons) has received convincing theoretical
justification, which is coherent with the landscape view of
protein folding, together with the related notion that the TS
may be a deformed image of the native state. All these points
will be more fully discussed in the next section.

■ THEORETICAL MODELS FOR PROTEIN FOLDING
In this section, we focus on simple folding models, which offer
low-resolution pictures and depend on only a few parameters.
These models are complementary to the more exact models
that allow calculation of partition functions without resorting to
free parameters.70

The rationale for building simple models is that the
landscape structure of the folding scenario and the related
remarkable robustness of proteins to mutations make
quantitative predictions of the folding models rather insensitive
to low-level details.71 This property is closely related to the
unexpected finding that generic pictures of the native state
incorporated into topological parameters (contact order and all
its variants) correlate well with the folding rates.72 Hereafter,
we follow a quasi chronological order to outline the main steps
of the development of theoretical models of protein folding.
In 1973, the framework model73 introduced the idea that

parallelization of folding may be the key to circumventing
Levinthal’s paradox. At the end of the 1970s, the dynamics of
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protein folding was discussed in terms of a diffusion−collision
(DC) model.55 Since then, several different pictures have been
proposed: the hydrophobic collapse (HC) mechanism74 in
1977, the nucleation−condensation model75 (NC) in 1995,
and the foldon model76 in 1996. The NC model was amended
in 2000 and turned into the extended nucleus model (EN).
Also, the DC model was subsequently modified into the foldon
diffusion−collision (FDC) model77 in 2004 for two-state
proteins and the FDC3 version for three-state proteins in
2005.78 The topomer search model (TSM) was introduced in
1999,79 and the closely related hydrophobic zipper (HZ)
model, the low-entropy-loss (LEL) routes model, and the
zipping and assembly (ZA) model came to light between 1993
and 2007.80−82 A visual representation of the main folding
models is given in Figure 2.
Hydrophobic Collapse (HC). The HC mechanism predicts

that hydrophobic forces and possibly backbone forces result in
chain collapse prior to the formation of elements of secondary
structure.83 Long-range interactions precede or are concomitant
with the establishment of local contacts; in the landscape
perspective, collapse corresponds to the narrowing of the

folding funnel and accounts for the essential part of the free
energy balance (see Figure 1).84,85 This view is in agreement
with recent studies showing that burial information is
conducive to effective reconstruction of the native structures
of small globular proteins.86,87 More generally, the paramount
importance of the hydrophobic effect has motivated the
investigation of minimalist models of folding based on
hydrophobic interactions.88,89 However, the nature main
features of the collapse are still a matter of controversy. For
example, it was argued that there are exceptions to the
mandatory presence of collapse,90 whereas in the case of
collapse-mediated folding, other investigations have discussed
the time scales of chain contraction or more general issues
concerning kinetic versus thermodynamic control, such as the
role of burial events in favoring a metastable active state with
respect to the thermodynamically more stable native state.91,92

A further critical topic is the relative importance of generic
hydrophobic interactions versus specific local interactions in
steering the unfolded protein toward a collapsed configu-
ration.91,92 Correlatively, there is an ongoing debate about the
presence of residual structures under unfolding conditions and,

Figure 2. Three principal views of the protein folding dynamics according to the hydrophobic collapse (HC), nucleation−condensation (NC)/
extended nucleus (EN) and framework models. The ordering (top-down in the middle column) follows the increasing hierarchical (or, equivalently,
the decreasing cooperative) character of the three mechanisms. The essential differences among these scenarios are reflected in the properties of the
transition state (TS), in which the role played by the secondary structure increases on passing from the HC to the framework model. The native state
N of the protein, which is itself an ensemble of several conformations, is represented by a unique structure because, under physiological conditions,
the fluctuations around state N are nearly negligible as compared with those observed around the unfolded state U.
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ultimately, about a more realistic characterization of the
unfolded state.91−94

Conversely, the open question about the role of collapse in
providing a suitable environment for the subsequent formation
of secondary structure elements91,92 may be of considerable
importance for clarifying some aspects of current models of
folding dynamics (summarized below in this section). It has
been reported that metastable collapsed states [molten globules
(MGs)] may be found on the way to the native state and have
been assumed to play the role of general reaction
intermediates.95 Characteristic features of the MGs are a
loose tertiary structure, a considerable amount of secondary
structure, partial formation of a hydrophobic nucleus, and more
or less tight packing of side chains according to whether they
hinder (dry MG) or permit (wet MG) free passage of the
solvent.96,97

The fold is already outlined in the MG state and turns out to
be stabilized by hydrogen bonds and hydrophobic but not van
der Waals interactions, so that at this stage, the fold is
independent of the details of the side-chain interactions. The
MG is the most compact of the unfolded conformations and is
characterized by peculiar attractive or oscillatory hydrophobic
interactions.98 The typical magnitudes of the two major
interactions stabilizing proteins (hydrophobic and hydrogen
bonds) are nearly the same in the MG as in the native state,
whereas van der Waals forces drive the later adjustments
leading to the native state.
Hierarchical Mechanisms. The hierarchical view was

initially put forward in the 1970s73,99 and more recently
proposed as a general mechanism.100,101 Hierarchical organ-
ization of folding directly reflects the analogous organization of
protein structures that can be dissected into separable domains
endowed with marginal stability (e.g., the foldons in the FDC
model or the microdomains in the DC model). Then the
process of folding a protein can be considered a combinatorial
mechanism of aggregation using the domains as building blocks
that implements a bottom-up assembly mechanism.100−102

The archetypical example of a hierarchical mechanism is the
framework model, a qualitative picture whose pivotal idea is
that, because of the dominant role of local forces, formation of
secondary structure precedes collapse of the backbone and
native tertiary interactions. In general, three main steps are
involved in the framework mechanism: the appearance of
metastable segments of secondary structure in a manner
independent of tertiary contacts, followed by a second step in
which the local motifs undergo propagation or diffusion and
collision to form a compact native-like scaffold, and finally a
step in which all interactions are adjusted and the chain settles
into the native structure. The framework scheme ensures that
the compact state is essentially the collapse of elements of
preexisting secondary structures and that the overall process is
compatible with many alternative routes, i.e., different
sequences of collisional events. Here we find the first clue
about the idea that early choices must not be retracted, that is,
location of the secondary structures must correspond quite
precisely to the native location to avoid late reconfigurations
that would substantially slow the process. This feature is the
very essence of the requirement of minimal frustration (see
Diffusion−Collision Models).
Nucleation−Condensation (NC) Mechanism. The HC

mechanism and the framework model found a partial synthesis
in the NC model. The NC picture, first put forward by
Levinthal and Wetlaufer,103,104 was corroborated by lattice

simulations and experimental studies.75 Ising-like models105 for
the folding of α-helices are the forerunner of the NC
mechanism in that they introduce the same segmentation of
the process into nucleation and propagation steps. It must be
recalled that the NC mechanism lends itself to interpreting also
the formation of β-hairpins.106 The NC model envisages the
formation of flickering embryos of secondary structure that are
scarcely populated and are subsequently stabilized by long-
range interactions. This results in the generation of a nucleus
formed at the transition state (TS) and around which the
remainder of the protein collapses. Distant contacts stabilize the
nucleus, and the NC model is an example of a cooperative
mechanism in which secondary and tertiary contacts are formed
concomitantly. Furthermore, because multiple nucleation sites
are conceivable, multiple paths are viable and are associated
with the heterogeneity of the TS.
It has been noted that the NC scheme belongs to the

category of models that seem more compatible with the large
variability (6 orders of magnitude) of the experimental folding
rates. The novelty is that the secondary structure becomes
more important because it sheds light on some basic features of
the TS.107 Via examination of the TS, it turns out that the
nucleus consists of residues that are more likely to belong to
the developing native secondary structure. Thus, the coupling
of secondary structure formation to the birth of the nucleus
enhances the mechanism of substantial entropy reduction that
accompanies the descent into the folding funnel (see Figure 1).
The NC model rationalizes the finding that the TS

reproduces the native CO despite the high structural variability
due to the fact that the majority of residues are accommodated
in their native positions only in later stages of the folding
path.108

Extended Nucleus. The extended nucleus scenario (EN)
can be viewed as an amended version of the NC model.109 The
peculiarity of the EN mechanism is that it bridges the gap
between seemingly irreconcilable theories, viz., the framework
and NC mechanisms. As a consequence, the classical
dichotomy, secondary structure first versus collapse first, is
solved in terms of a variable synergy of stability and topology.
This feature corresponds to recognizing the variable balance of
long-range interactions and short-range interactions. The EN
view envisages the possibility of having in the folding nucleus
precursors of secondary structure elements of variable native
character. As their native-like character decreases, the
mechanism shifts from the framework picture to the NC
scheme. This picture of the TS suggests that the stability of the
stretches with native secondary structure and the loop closure
entropic term (topology) are the essential determinants of the
folding rate. In this manner, it has been noted that stability is
very sequence-sensitive, whereas the folding dynamics is
determined more by topology, i.e., gross properties of the
fold.72

So far, we have sketched the path to a synthesis of folding
schemes starting from the side of nucleation and collapse
processes; we now examine other folding schemes that fall into
the class of hierarchical processes and assign a more direct
intervention to the elements of secondary structure.

Diffusion−Collision Models. In the late 1970s, Karplus
and Weaver developed the DC model.55,99 It was the first
physics-based model of protein folding that provided a
quantitative version of the framework model initially applied
to helical proteins.55,56,99,102 The DC model explores long-term
protein evolution and allows reproduction of the large
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amplitude changes that occur in the folding dynamics at the
price of adopting a skeletonized description of the protein chain
in the style of polymer physics. Pseudoparticles endowed with
known structural properties (microdomains) are connected by
structureless regions of the backbone. The DC model depicts
the folding process as a sequence of collisional events involving
the microdomains. The Brownian trajectories of the coupled
microdomains result in the coalescence of these regions and
eventually in the progressive formation of aggregates with an
increasing degree of order. The maximally gross-grained choice
was met in the DC scheme as the elementary microdomains
were identified with the native helices. Considering a protein
with N helices, each aggregate having order n (1 < n < N)
corresponds to an intermediate state, whereas each native helix
has n = 1 and n = N indicates the aggregate with the highest
possible order, which represents the end of the folding
dynamics. Clearly, in the DC model, there is a natural mix of
local and global forces that are assumed to be uncoupled and to
operate on separated time scales in a clear-cut way. Helix
formation is a very rapid process, which is then followed by
slower diffusive motions that give rise to the progressive
stabilization of larger aggregates. It should be noted that the
assumption of preformed helices is a version of the slaving
principle mentioned above. Concomitant effects of local forces
(responsible for the formation and stability of the helices) and
long-range forces (loop closure entropies and the hydrophobic
effect) determine the coalescence probability of the micro-
domains upon collision and ultimately the rate of formation of
all possible states (intermediates and native states).55,56,99

The various aggregates map the main states eligible as
intermediates. The existence of such a web of interconnected
states traversed by alternative folding routes leading to the
native state was clearly demonstrated in the case of calm-
odulin.110

The DC model in its original formulation depends on several
adjustable parameters and on the preliminary determination of
structural features. For example, its implementation requires
the determination of the native structure and the stability of
each native helix. This difficulty was partially remedied by
supplementing DC dynamics with algorithms designed to
estimate the stability of helical domains.55,56,99

The FDC model is a more refined description of the folding
that transforms the DC picture into a more self-contained tool
for reconstructing the pathways and the kinetics of helical
proteins. In the FDC model, an ANN is used to achieve the
following goals: (i) to predict the secondary native structure,
(ii) to identify the initiation sites of folding (foldons) of the
protein40 that replace the helical microdomains of the DC
model, and (iii) to specify a measure of stability of the foldons
themselves.40,77 Helices without foldons do not participate in
the rate-limiting step and belong to those structures that appear
after the TS has been reached. Such a delayed formation of
helices induced by foldon coalescence resembles the mecha-
nisms in which binding and molecular recognition promote the
stabilization of new helical structures.96

The FDC model uses sequence-specific features because the
ANN reads the sequence of the protein. At this point, most of
the free parameters of the DC model (location and stability of
the microdomains) can be estimated directly from the protein
sequence. Computing the coalescence probability requires the
evaluation of the solvent-accessible surfaces of the colliding
elements in the unfolded state and after the folding has been
completed. This can be done by resorting to the tertiary

structure of the protein. The FDC model has been successfully
applied to two-state proteins,77,111 to predict the kinetic effect
of point mutations,111 and to describe the folding dynamics of
three-state proteins (FDC3 model).78

Topomer Search Model (TSM). The TSM79,112 was
motivated by the search for the physical factors underpinning
the empirical correlation of the contact order (CO) with
folding rate113 and the cooperativity of folding dynamics. This
view of folding originates from the finding that constrained
simulations supplemented with simple burial criteria are
sufficient to identify the native fold. The key concept is the
topomer, which is the set of conformations sharing the same
topology. The model assumes that there exists a clear-cut
separation of the time scales between the topomer search, a
large-scale rate-limiting event depicted as a random transition
from the current topology to a drastically modified one and the
intratopomer nonrandom local events, i.e., the growth or
zipping of those local structures compatible with the current
topology. The TSM works for β- and α/β-proteins but
underestimates the rates of three-helix bundles. Moreover, the
TSM cannot be extended to include prospective intermediates.
Like the FDC model and the TSM, a related approach114

builds on the basic idea that bringing distant residues close to
each other is the rate-limiting step of the folding process. Much
as in the FDC model, in which the reaction coordinate is the
number of coalesced foldons, here the coordinate is the number
of native contacts formed. On the whole, the dynamics of
contact formation provide a reasonable physical justification of
the CO folding rate relationship essentially in terms of the
entropy changes involved in the closure of the specific loops
defining the topomer,115 although excluded volume effects and
local interactions are underestimated.116

Alternative folding models such as the hydrophobic zipping
(HZ)81 and low-entropy-loss (LEL) models80,117 share some
fundamental principles with the schemes mentioned above.
The LEL model is based on the concept of effective contact
order (ECO). ECO is a path-dependent CO providing
information about the rates and routes. Minimizing the ECOs
at each step of the folding amounts to minimizing the
incremental entropy losses ensuing from loop closures and
turns out to be a successful search strategy for identifying the
dominant pathway on the energy landscape.

Determinants and Unification. As a main result of studies
over the past decade, several widely debated dichotomies are
being solved. Besides the dichotomy of secondary structure first
versus collapse first (see Extended Nucleus), there is the
distinction between two-state and three-state folding, closely
related to counterposition of the NC scheme with the
framework picture (exemplified by the DC model) or,
alternatively, cooperativity with modularity. The turning point
came with studies showing that proteins belonging to the same
family exhibit either the former or the latter opposite folding
mechanism109,118,119 according to experimental conditions.120

This pointed to the existence of a common underlying
mechanism expected to undergo a progressive shift from the
NC to the DC extreme controlled by the most prominent
determinants of folding, i.e., hydrophobicity (via TS rational
redesign)9 and helical propensity (in the N and TS
states).119,121,122 Gradual resolution of the dichotomies
described above was favored by the improved temporal
resolution of recent detection techniques stressing that
intermediates are ubiquitous and their presence directly mirrors
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the ruggedness of the energy landscape even in small single-
domain proteins.123

The general convergence toward a universal picture is
confirmed by comparing the same essential features captured
by the EN, HZ, and FDC models.82 Basically, the unifying
mechanism starts with the formation of one or more nuclei,
comprising a limited number of key residues that belong to
nativelike marginally stable local structures; this step is followed
by a stepwise global collapse eliciting formation of nonlocal
contacts and accretion of the partially formed structures.
Not surprisingly, the EN and FDC pictures provide similar

predictions for a set of proteins whose folding mechanisms are
known to span the whole range between the NC and DC (fully
cooperative and fully hierarchical) descriptions.118 In addition,
the flexibility of the FDC/FDC3 model (despite its limited
applicability to all-α proteins) is also shown by its ability to
reproduce the shift from two-state to three-state folding.78 The
alternative pathway view versus landscape view is also being
reconsidered within a unified framework. This occurs in the
FDC or the LEL route models in which the multiplicity of
paths is compatible with the emergence of a bundle of similar
paths (or a single path, as a limiting case) defining the
dominant macro route.

■ DATABASES AND RESOURCES FOR PROTEIN
FOLDING AND STABILITY

The growing opportunity to share information via the Internet
has allowed the creation of curated databases in which
experiments performed by single groups can be made available
to the scientific community. This has alleviated the bottleneck
effect plaguing the science of proteins due to the fact that the
gathering of experimental data about the folding and structures
of proteins is much more technically demanding than the
recent sequencing technologies, so that structural studies lag far
behind the more expedited characterization of new sequences.
Actually, a look at the current protein databases shows that

the rate at which three-dimensional (3D) structures are
determined is significantly lower than the rate of discovery of
structural classes (see Figure 3). The reduced pace at which the
amount of structural data grows is also due to the fact that, in

general, different proteins belong to the same structural class,
this finding being in agreement with the observation that
protein structures are evolutionarily more conserved than
sequences.124 Not surprisingly, the question about the
completeness of the known protein structural space still has
to be answered. In this section, we first give a bird’s-eye view of
the main physical quantities that constitute the basic language
in which most theoretical considerations of protein structures,
thermodynamics, and kinetics are usually cast. We then review
the online databases of experimental data on protein structures,
folding thermodynamics, and kinetics.

Interactions in Protein Folding. Structural, thermody-
namic, and kinetic features are essential for defining the details
of the folding process. In particular, the protein 3D structure
gives important clues about important interactions occurring in
protein folding (see Figure 4).
In proteins, the two main forces stabilizing the native

structure are electrostatic interactions and the hydrophobic
effect, whereas the main destabilizing force is the loss of
conformational entropy.125 Electrostatics is essential for
elucidating the relationships between structure and function.
Among electrostatic forces, the long-range interaction between
two neighboring and oppositely charged residues (salt bridge)
plays an important role in protein structure and function,
including diverse processes such as oligomerization, molecular
recognition, allosteric regulation, domain motions, and α-helix
capping. Moreover, salt bridges are expected to stabilize the
native state of proteins, but the current experimental and
theoretical estimates of their free energy contributions vary
significantly.126 The local and nonlocal electrostatic interactions
that determine the propensity of each residue for any secondary
structure type have an only moderate influence on stability as
shown by studies proving its weak dependence on the pH and
salt concentration and the negligible evolutionary conservation
of the charged residues. Other important electrostatic
interactions include the hydrogen bonds whose contribution
to the folding process is still controversial because it is strongly
dependent on the polarity of the microenvironment.127 Proper
accounting for the wealth of electrostatic interactions in the
interior of proteins is also complicated by recent studies
pointing to the unexpected ability of proteins to tolerate the
substitution of internal positions with charged residues,
whether basic or acidic,128 to the difficulty of assigning
physically consistent values to the dielectric constant in the
core of proteins,129 and the controversy over the existence of
stabilizing n−π* interactions130 that have recently been
proposed as dipole−dipole interactions.131

This experimental and theoretical evidence suggests that
protein stability is to be ascribed to a delicate balance of many
weak forces. By way of example, it has been argued that van der
Waals interactions, associated with tight packing of the
hydrophobic regions in the protein core, result in a
contribution to stability comparable to that of the classic
hydrophobic effect.132

In any case, the primary role in the early phases of folding is
played by the aversion of nonpolar hydrophobic residues to
water. The hydrophobic interaction ensues from a collective
effect favoring segregation of nonpolar residues that tend to
avoid direct contact with the polar aqueous environment.
Although the prevailing opinion is that hydrophobicity is
responsible for the compaction of the protein and the
concomitant formation of a hydrophobic core in the inner
region of the folded molecule,96 several aspects of this

Figure 3. Growth of PDB, SCOP, and CATH data during the past
several decades.
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interaction need to be clarified,133−135 including the operational
definition of the hydrophobic free energies.
Thorough investigations of the final outcome of the

hydrophobic effect (formation of an MG) have proposed to
discriminate between conventional (“wet”) and “dry” molten
globules.96 Both states precede the formation of the native
structure; however, the wet MG corresponds to a dynamic core
with nativelike secondary structure that can be accessed by the
solvent and lacks close packing, whereas the dry MG is a tightly
packed conformation from which water is segregated. An
illustrative experiment has been conducted with a mutant of
chorismate synthase in which a monomeric form of the
enzyme, which folds through a wet MG, has been shown to
retain the original activity of the dimeric enzyme.136 More
precisely, it turned out that the wet MG exhibits full enzymatic
functionality and that after binding a substrate analogue the
semifolded protein undergoes further compaction. The finding
that a dry MG can occasionally give rise to detectable unfolding
intermediates hints at the fact that protein−protein interactions
may have a strong impact on the folding mechanism stabilizing
or destabilizing intermediate conformations along the folding
pathway.
The protein folding has many similarities with binding

mechanism that can be described by funnel-shaped energy
landscape.137 Indeed, it has been frequently observed that
folding and ligand binding may be closely coupled, although in
most of those cases, the conformation of the protein is
recognized by the ligand and the question of whether the ligand
influences the folding kinetics is still poorly understood.138

These observations support the view that analysis of the
protein structure is important for estimating the contributions
of the various types of interactions to the stability of the native
state. The recently proposed “fold approach”139 involves
extensive comparative analysis of the folding process of
topologically, structurally, and/or evolutionarily related pro-
teins to discern common patterns and trends in folding. This
methodology helps in obtaining an improved understanding of
the crucial steps of folding. Similarly, the distinction between
the wet and dry MG that clarifies details of the later steps
preceding the native state, the fold approach sheds light on the
subtle dynamic arrangements leading to the TS (in terms of
successive stabilization of the obligate and critical nuclei). This
results in a more microscopic dissection of the folding process
that allows the selective identification of the residues
responsible for the definition of topology, function, folding,
internal friction, and intermediates.139

Therefore, processing the raw structural data (atomic
coordinates of the native structure) is important for generating
a variety of useful intermediate data such as the solvent-
accessible area per residue or group of residues that permits
estimation of several structural and thermodynamic values,
discriminates between buried and exposed amino acids, and
allows evaluation of electrostatic forces and structural
propensities for each residue.140 Elaboration of the 3D structure
is also important for characterizing the network properties of
the native interactions;141 it also allows visual inspection in the
search for domains to be split into smaller building blocks that

Figure 4. Different variety of interactions (hydrogen bonds, salt bridges, and disulfide bonds between cysteines) that define the secondary structure
of proteins. (A) Protein’s sequence in which the superimposed symbolism gives a one-dimensional visualization of the regions in α-helical (wavelet),
β-sheet (arrow), and random coil (straight line) structure. The overall 3D conformation of the same protein is shown in panel B. Examples of
hydrogen bonds stabilizing α-helices and β-sheets are reported in panels C and E, respectively. Examples of disulfide bond and a salt bridge are
shown in panels D and F, respectively.
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may provide milestones for the most probable folding pathways
(see Figure 1).142

In general, the development of computational methodologies
tends to supplant these reductionistic approaches with more
straightforward and phenomenological procedures. The price to
pay is the lack of interpretation in microscopic terms; for
example, structural preferences for each residue are no longer
traced back to atomic interactions but are simply the outcome
of some statistical treatment of the structural databases.
Since the beginning of the 1990s, statistical approaches have

undergone significant evolution; today, sophisticated statistical
algorithms predict protein folding features by implementing
machine learning approaches. A related example is the use of
structure-based methods for the prediction of protein
thermodynamics that build on parametric equations whose
free parameters are optimized by using structural and
thermodynamic reference data on the native states of
crystallized proteins.143 It is to be stressed that although
machine learning methods have attained a good level of
accuracy in the prediction of several protein structural and
thermodynamic features, their performance is still limited in the
case of new folds that lack sufficient information about
evolutionarily related proteins.
Protein Structure Data. As mentioned in the preceding

sections, 3D protein structures are useful for the development
of simplified models.144 The most comprehensive repository of
macromolecular structures is the Protein Data Bank (PDB).144

Currently, the PDB contains more than 93000 macromolecular
structures, ∼93% of which are proteins and ∼7% of which are
nucleic acids (either isolated or in complexes with proteins). In
the database, ∼88% of the structures were obtained by X-ray
crystallography and the remainder using NMR and other
techniques.
The complete definition of the space of protein structures is

important for selecting key interactions for the stabilization of
the native conformation and depends on the procedure used to
classify the proteins included in the PDB. The current gold
standards for the classification of protein structures are
SCOP145 and CATH.146 The Structural Classification Of
Proteins (SCOP) is a database composed by manually classified
protein structure domains based on their similarities. It is a
hierarchical classification comprised of the following levels:
species, protein, family, superfamily, fold, and class. In the
SCOP database, two domains that belong to the same fold have
similar secondary structures in the same arrangement and with
the same topological connections. CATH is a semiautomatic
procedure for defining a hierarchical classification of the
structures of protein domains. This classification is based on
four levels: class, architecture, topology, and homologous
superfamily. When two proteins have similar structural features
and a high degree of sequence similarity in conjunction with
similar functions, they are assumed to be evolutionarily related
and, therefore, associated with the same CATH identifier.
To increase the rate of determination of structures and folds,

the Structural Genomics (SG) project147 has been started. The
overall work of determination of new folds is distributed among
the laboratories associated with the SG network in such a way
that the activity of each of them focuses on selected target
proteins.148 However, despite the intensive work of the SG
centers having determined more than 11500 structures, the
number of known structural classes has not appreciably
increased (see Figure 3). Therefore, we are still far from
having a sufficient view of the universe of structural folds that,

according to a recent estimation, amount to approximately
1700.149 We are hopeful that an additional contribution from in
silico protein design will allow the exploration of regions of the
protein universe not yet observed in nature.150

Protein Thermodynamic Data. The stability of proteins
can be quantified using various experimentally determined
thermodynamic parameters. The most common are the free
energy change (ΔG) in the protein, which measures the
conformational stability estimated from a thermal denaturation
curve, the free energy change of water (ΔGH2O), calculated
from the unfolding curve as a function of the denaturant,151 and
the melting temperature (Tm) at which 50% of the protein is
unfolded.152

Chemical Denaturation. In chemical unfolding experiments,
the fractions of unfolded and folded protein are measured by
adding denaturants such as urea or guanidine hydrochloride
(GuHCl). In this case, the evaluation of the midpoint
concentration (Cm) measures the concentration of denaturant
at which 50% of the protein is unfolded. Three models are
currently used for the interpretation of the unfolding data: the
denaturant binding model, the solvent exchange model,153 and
the linear energy model.154 They differ mainly in the
description of the interactions responsible for unfolding. The
first two models consider the protein as a collection of
independent sites where the denaturant can bind reversibly.
The last model assumes that the number of denaturant binding
sites is proportional to the accessible surface area, and
therefore, one expects a simple linear dependence between
stability and the concentration of the denaturant. Because the
fraction of folded and unfolded states cannot be measured
directly, the relative population of folded molecules is estimated
by various structural probes such as the absorbance and
fluorescence at 287 nm, which quantifies the solvent exposure
of tryptophan and tyrosine; far-ultraviolet circular dichroism
(180−250 nm), which determines the secondary structure of
the protein; dual polarization interferometry, which estimates
the molecular size and density; and near-ultraviolet fluores-
cence, which detects changes in the environment of tryptophan
and tyrosine.

Thermal Denaturation. Thermal denaturation is also
generally modeled by assuming a two-state unfolding process.
In these experiments, the free energy change (ΔGu) is
described as a function of the variations of the unfolding
enthalpy (ΔH), entropy (ΔS), and heat capacity (ΔCp) at
constant pH and pressure.143 Assuming that ΔCp is temper-
ature-independent, all the thermodynamic observables can be
determined from a single differential scanning calorimetry
thermogram of the system. More accurate estimates of ΔCp can
be obtained by subjecting the system to slight variations in pH
or protein concentration. Alternatively, ΔCp can be accurately
measured from the change in the solvent-accessible surface area
(SASA) of the protein upon thermal denaturation.143 A recent
paper provides full details about these experimental techniques
for the determination of protein stability.155

The most comprehensive database of thermodynamic data of
proteins and mutants is ProTherm,156,157 a free online database
that collects and documents experimental thermodynamic
measurements taken from the literature. Its Web page includes
an interface to facilitate searching in the database and sorting
and visualizing the results as well as information about the
protein sequence and protein structure (if available) for each
thermodynamic experiment. The statistics of the entries in the
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ProTherm database show that the amount of published
thermodynamic data has increased significantly over the past
few years (see Figure 5). In the current release (February

2013), ProTherm includes 25830 entries from 1902 biblio-
graphic references regarding 740 individual proteins; for 311
wild types, supplementary data about mutants are also available
(∼81% of the entries are associated with single-point mutants).
The largest part of the data was obtained by thermal (∼61%)
and chemical (∼38%) denaturation using urea or GuHCl.
Approximately 90% of the thermodynamic measurements use
circular dichroism (43% of the total), differential scanning
calorimetry (25%), and fluorescence (22%). The majority of
ProTherm data concern two-state folding mechanisms, and
only ∼7% refer to multiple-state folding processes.
Protein Folding Kinetic Data. The kinetics of protein

folding is another key aspect of the process. In the simple two-
state folding mechanism, the equilibrium between unfolded and
native states is established through a single TS; in this case, the
rates of folding (kf) and unfolding (ku) are directly correlated
with the equilibrium constant and consequently with the
stability of the protein.
Because by definition the TS is not experimentally accessible,

the folding kinetics are determined by studying the unfolding
and refolding of the protein induced typically by a rapid jump
in control parameters, such as denaturant concentration,
temperature, pH, or pressure. The recovery of the equilibrium

condition is monitored by spectroscopic techniques. Assuming
that the folding and unfolding are single-exponential processes
under a range of denaturant conditions, and that ln(kobs)
(where kobs = kf + ku) at different concentrations of denaturant
gives rise to a “V-shaped” curve called a chevron plot, kf and ku
can be evaluated by linear fitting the two sides of the curve and
extrapolating to zero denaturant concentration. Many proteins
show more complex folding mechanisms reflected in deviations
from the standard chevron plot. From the experimental
perspective, the presence of a populated intermediate state
during the folding process is indicated by the nonlinear
behavior of one of the chevron plot arms. Depending on
whether the intermediate is on or off the pathway, different
models have to be adopted to estimate the kinetic constants. A
complete discussion of all possible scenarios was described in a
recent review.158

Alternatively, the TS can be studied indirectly using protein
engineering methods involving the introduction of single-point
mutations into the protein sequence, which perturb the
energies of the TS and the energy barriers between the native
and unfolded states.
Kinetic data are less abundant than thermodynamic data. The

databases of protein kinetic data on the Internet are manually
curated by extracting the relevant information from the
literature. In 1998, the first seminal review reported folding
kinetics data of all the proteins studied up to that point.159 Over
the past few years, as more and more data have been generated,
updating of the data set has become a time-consuming job of
questionable value, because of the absence of a standard
protocol. Such a protocol was suggested only in 2005 when
kinetic data for 30 two-state proteins under standard conditions
were collected.160 A few years later, a more comprehensive
collection of experimental data about the kinetics of folding was
organized in the PFD and KineticDB161 databases.
The main goal of KineticDB is to provide users with the

diverse set of protein folding rates known from experimental
work. For each record, KineticDB reports a single protein
folding kinetics measurement extracted from the literature, the
details of the protein under study, its best known 3D structure,
the experimental conditions, and reference to the original
paper. In the event that the exact protein structure is unknown,
the structure of the closest homologue is provided. The
experimental data include the natural logarithms of kf and ku
extrapolated to zero denaturant, the natural logarithm of the
midtransition rate of folding, the TS coordinate, ΔGu
(unfolding free-energy change) in water, and the type of
folding mechanism (two-state or multistate). KineticDB
contains kinetic data from 87 single-domain proteins and

Figure 5. Growth of the amount of thermodynamic data vs time in the
ProTherm database.

Table 1. Databases and Resources for Protein Folding

name URL description ref

Protein Structure Databases
PDB http://www.pdb.org macromolecular tertiary structure database 144
SCOP http://scop.mrc-lmb.cam.ac.uk/scop structure classification of proteins 145
CATH http://www.cathdb.info HMM and domain protein 3D structure classification 146

Thermodynamic and Kinetic Databases
ProTherm http://www.abren.net/protherm/ protein thermodynamic database 156
KineticDB http://kineticdb.protres.ru/db/index.pl manually curated databases of kinetic data 161
Muñoz lab http://tmg.cib.csic.es/servers/data-tables database of kinetic rates for proteins and their mutants 162, 163
PFD http://pfd.med.monash.edu kinetic database collecting folding rates and energies 247
REFOLD http://refold.med.monash.edu.au database of optimized refolding protocols 165
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∼100 mutants. Protein domains and short polypeptides without
disulfide bonds in the native structure are treated separately.
The protein lengths range from 16 to 396 residues. Currently,
the database comprises 172 experimental kinetic data relative to
124 two-state and 45 multistate folding mechanisms. The lnkf
ranges from approximately −7 for slow folding proteins
through multistate mechanisms to 16 for two-state fast folding
proteins. Another database of kinetic data worth mentioning is
PFD; in the latest version, PFD adopts standards for data
acquisition, analysis, and reports that facilitate the comparison
of folding rates, energies, and structures across various sets of
proteins.
Alternatives to KineticDB and PFD are available on the

Muñoz lab Web site (see Table 1). This Web site hosts two
manually curated sets of data: the database of kf and ku values

162

for wild-type proteins, including kinetic data from 52 proteins,
and the single-point mutant protein folding database,163

collecting experimental kinetic data of ∼1866 mutants from
26 proteins. The latter data set is particularly useful for the
direct calculation of the ϕ values because the data are organized
in different tables where, for each protein, the experimental
kinetic data of the wild type and its mutants are grouped
together. The tables in the Muñoz lab Web site report
experimental values of parameters such as kf and ku and also the
variations in ΔGTS−U and ΔGN−U between the wild type and
mutant (ΔΔGTS−U and ΔΔGN−U, respectively).
Manual curation of data extracted from the literature has

proven to be useful for a number of new theoretical, empirical,
and computational studies. In parallel, there has been growing
interest in the sources of experimental error and variability, and
recent work has shown that the experimental precision of
ΔΔGN−U across various laboratories is ∼1.3 kJ/mol.164 The
accuracy of experiments is a significant issue for the
development of predictive algorithms. The error associated
with the experimental measurements is particularly important
when selecting a reliable set of experimental data and for the
statistical assessment of the results obtained from their analysis.
From the experimental point of view, another critical issue

concerns the methodologies used to synthesize sufficient
amounts of any protein. Overexpression of proteins in bacteria
is a routinely used method. Unfortunately, a considerable
proportion of the proteins expressed in bacterial hosts
aggregate, forming inclusion bodies. Moreover, before the
expressed protein can be subjected to any kind of biophysical or
functional assays, it must refold to its native state. Therefore, it
is important to define efficient protocols for protein refolding,
which minimize the undesired competition of misfolding and
aggregation reactions. These requirements are met by the
REFOLD database.165 It is a Web-accessible database
describing published methods employed in the refolding of
proteins. Currently, REFOLD contains 1156 annotated
refolding records from 735 proteins in 288 organisms. Possibly,
with an increase in the number of refolding protocols,
REFOLD will become a reference resource for the optimization
of protein renaturation.
A selection of Web available databases and resources is

reported in Table 1.

■ METHODS AND TOOLS FOR PROTEIN FOLDING
AND STABILITY

Over the past several years, the amount of content in the
databases of experimental protein folding measurements has
substantially increased. This has resulted in the development of

several computational methods for predicting important aspects
of protein folding using sequence and structure information. In
this section, we describe a selected set of available Web tools
for the prediction of protein structures, folding thermody-
namics, and kinetics.

Algorithms for Protein Structure Prediction. Because of
the growing appreciation of the importance of the native
structures as a guide in the search for alternative conformations
during folding, much work has been done in structural
bioinformatics to develop computational tools for the
prediction and assessment of native protein structures.166,167

As a major consequence, this paved the way for the study of the
folding process of proteins of unknown structure. Here we
describe the tools for predicting protein tertiary structure
providing a short list of algorithms representing the state of the
art for this task.
Following the observation that protein structure tends to be

conserved within families of proteins performing the same
functions in different organisms, several approaches have been
developed to address the problem of protein structure
prediction. In general, current methods for structure prediction
fall into two main categories: template-based modeling and free
modeling. The methods belonging to the first class (e.g.,
threading and comparative modeling) rely on detectable
similarities between the modeled sequence (target) and at
least one known structure (template). The second class of
methods, also termed de novo or ab initio methods, predict the
structure directly from sequence, without relying on fold
similarities. Today, it is commonly accepted that an empirical
threshold of ∼30% sequence similarity separates the region
with a high degree of homology, where the target proteins can
be predicted by homology modeling from the “twilight zone”
(with a low degree of homology) where more sophisticated
algorithms are needed. In general, the reliability of the resulting
models is related to the level of sequence identity between
target and template proteins. High-accuracy models require
more than 50% sequence identity and have an average root-
mean-square deviation (rmsd) of ∼1 Å for the main-chain
atoms. Medium-quality structure predictions (with 30−50%
sequence identity) have an average rmsd of 1.5 Å on ∼90% of
the main-chain atoms.
For low-quality predictions belonging to the twilight zone

(<30% sequence identity), the alignment errors may be
considerable so that the model may predict a substantially
incorrect fold.168 On the other hand, for proteins whose
structures have not been experimentally characterized, high-
resolution models predicted by template-based methods can be
reliably used to determine key interactions in the native
structure and to interpret experimental thermodynamic and
kinetic data.

Structure Prediction Tools. Where homology modeling
applies, MODELER169 represents one of the best choices for
automatically performing all the steps required to build an
accurate model.170 MODELER predicts the tertiary structure of
the target protein fulfilling the spatial restraints consistent with
the sequence alignment between the target and template and
the 3D structure of the template. Conservation is the key
criterion for extrapolating sensible restraints from the template
to the equivalent residues of the target, in that the more
evolutionarily conserved the residues, the more stringent the
structural constraints they introduce into the final putative
structure. In addition, servers like ModBase171 and Protein
Model Portal172 give access to large repositories of predicted
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structures of millions of target proteins. If there is no clear
similarity between the target protein and at least one template
in the PDB, I-TASSER173 and Robetta174 can predict the
structure using more complex template-free approaches. The I-
TASSER algorithm implements a threading procedure in which
the query sequence is matched against a nonredundant
database of sequences to identify possible evolutionary relatives.
The sequence profile resulting from the multiple-sequence
alignment of homologue proteins is then used to predict the
secondary structure of the protein. In the next step, all the
templates are threaded through a representative PDB structure
library combining seven threading programs to find the top-
scoring templates. Finally, continuous fragments from the
templates are used to assemble the predicted structure,
including an ab initio approach to model the unaligned regions.
A standard de novo structure prediction tool to cope with the
latter problem is Robetta, which is an implementation of
Rosetta.175 The Rosetta algorithm predicts protein structures
using a de novo approach based on a library of three- and nine-
residue fragments. The fragments are selected according to
their sequence similarity with the target and assembled using a
Monte Carlo simulated annealing procedure.
Prediction Assessment. The evaluation of the predicted

models is a key issue that must be addressed prior to their
application in research studies. In 1994, the series of critical
assessment of techniques for protein structure prediction
(CASP) experiments was initiated to objectively test protein
structure prediction methods and to serve as an official forum
for the independent assessment of the state of the art in protein
structure modeling.176 The biannual CASP meeting has
celebrated its 10th edition and is the reference for the
international community of scientists working on protein
structure prediction as well as for software developers and
users. In parallel to the CASP experiments, several automatic
methods have been developed to assess the quality of the
predicted protein structures.177 These algorithms use scoring
functions that rely on physics-based energies, knowledge-based
potentials, combined scoring functions, and clustering
approaches. In particular, the first two methods calculate
pseudoenergies that allow one to detect putatively destabilizing
interactions in the protein structure and/or simulate the folding
process. Methods implementing physics-based scoring func-
tions compute the interaction energies via a force field that
combines experimental observations with quantum mechanics.
The most commonly used force fields are AMBER,178

CHARMM,179 and GROMOS,180 which are also routinely
applied in MD simulations.
In general, statistical potentials, also termed knowledge-based

potentials, encode the statistical preferences of residues or atom
types to be exposed to the solvent, or to interact with each
other in a pairwise or higher-order fashion. Such preferences
are extracted from subsets of protein structures, which describe
the known structural space of globular proteins. The basic
hypothesis underlying this approach is that protein structures
contain clues about the stabilizing forces of protein folding,
which can be reconstructed under the following assumptions.
(i) The folding can be described in terms of a free energy
function. (ii) The conformational energy can be approximated
by two-body interactions. (iii) Conformations occurring
frequently are expected to correspond to low-free energy
structures. If such assumptions are true, it is likely that the
minimization of the scoring function mirrors the minimization
of the protein’s free energy and corresponds to the observed

native structure. Several knowledge-based potentials are
currently in use,181 including ANOLEA,182 DFIRE,183 and
PROSA-web.184

Algorithms for the Prediction of Protein Stability. The
characterization of the chemicophysical rules governing protein
stability is one of the long-term goals of protein structure
analysis185 that is necessary for improving the effectiveness of
rational protein design. The most favored method for pursuing
this end is to study the effects of mutations on protein stability.
This has led to the development of several methods for
predicting stability changes induced by residue substitution.186

These algorithms are mainly based on energy functions
designed to assess the stability free energy of the protein and
its mutants and/or machine learning-based methods trained to
predict the stability changes upon mutation.

Energy Function-Based Approaches. Methods based on
energy functions implement an algorithm for sampling
alternative 3D conformations and ranking them according to
an appropriate scoring function. The reason why such methods
have been devised is that although, in principle, quantum
mechanics is the proper framework for calculating rigorous
solutions for these problems,187 its application to proteins is
not feasible because of the huge number of degrees of freedom
involved. In general, the energy functions can be grouped into
three major categories: (i) physical effective energy func-
tions,188,189 (ii) statistical potential energy functions,190−192 and
(iii) empirically defined energies.193−196 The physically effective
energy functions generally make use of MD simulations to
estimate the difference in ΔGN−U between the wild type and
mutant (ΔΔGN−U). Although with distributed computing
techniques it has been possible to perform up to 0.5 ms of
MD simulation,197 the estimation methods of physicochemical
energy functions are computationally demanding, and their
application to the analysis of large sets of mutations is still not
viable.195

To reduce the search space, EGAD describes the unfolded
state, aggregates, and alternative conformers explicitly with
empirical models featuring the Optimized Potentials for Liquid
Simulations All-Atom (OPLS-AA) force field approach to
represent the atom−atom interactions, the generalized Born
continuum model to describe the electrostatics, and solvent-
accessible surface area-dependent terms to account for the
hydrophobic effect. EGAD has been optimized using the
binding free energy changes upon mutations for protein−
protein interactions and independently tested in the prediction
of ΔΔGN−U upon mutations.
Recently, alternative approaches based on statistical

potentials and empirical energy functions have been developed.
PopMusic calculates the changes in stability of a given protein
using different combinations of database-derived potentials
that, in turn, depend on the change in solvent accessibility of
the mutated residues. The first version of PopMusic
implemented torsional and distance potentials derived from
high-quality structures from the PDB. This combined energy
function uses distance potentials to represent the main
hydrophobic interactions that stabilize the core of the protein
and torsion potentials to describe local interactions that
stabilize the protein surface. In a recent version, the program
includes an ANN to improve the accuracy of the resulting
estimates.198 A different statistical potential based on DFIRE196

is used in DMUTANT. DFIRE is a potential that implements
the distance-scaled finite ideal gas reference state approach to
optimize a residue-specific all-atom statistical potential where
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the background distributions of atom pairs is likened to an ideal
mixture of uniformly distributed atoms. DFIRE was derived
from a data set of 1011 high-resolution structures of
nonhomologous proteins and has been tested in the prediction
of the stability of 895 mutants.
Fold-X is one of the most popular algorithms for the

prediction of ΔΔGN−U based on empirical energy functions.195

It allows fast and quantitative estimation of ΔGN−U for proteins
and protein complexes. The energy function implemented in
Fold-X is a weighted sum of various free energy contributions,
among them van der Waals interactions, solvation, electrostatic
interactions, hydrogen bonds, and entropy terms. The weighted
terms have been optimized over a set of 339 mutants from nine
different proteins, whereas the method was tested using a blind
test set of 667 mutants, and a set of mutants of 82 protein−
protein complexes. After 5% of the outliers had been removed,
the correlation between experimental and predicted ΔΔGN−U
values is 0.83 with a standard deviation of 0.81 kcal/mol. More
recently, new energy functions have been proposed,199,200 and
although accurate comparisons are difficult to conduct, one can
tentatively conclude that Fold-X and DMUTANT are the best
downloadable tools in this category.201

Machine Learning Methods. Over the past decade, a large
amount of thermodynamic data has become available online
through the ProTherm database, and this has fostered the
design of a new generation of machine learning algorithms. In
particular, machine learning methods using ANNs,202

SVMs,203−205 random forest,206,207 and decision trees208 have
proliferated once the prediction of ΔΔGN−U upon single-point
mutation was simplified to the mere binary prediction of the
sign of ΔΔGN−U. All of these methods rely on preliminary
information about protein sequences and/or structures. In
2004, I-Mutant was the first machine learning approach for the
prediction of the sign of ΔΔGN−U that implemented an ANN
cross-validated over ∼1600 single-point mutations.202 I-Mutant
takes as input a 41-dimension vector encoding the mutation
under study and the structure of the protein around the
mutated position to predict the sign of ΔΔGN−U. A new release
based on SVMs (I-Mutant2.0) introduces two improvements: it
predicts the thermodynamic effect of the mutation using only
sequence information209 and predicts the actual value of
ΔΔGN−U.

203 More recent machine learning methods186 have a
broader scope and are able to predict the effect of double- and
multiple-point mutations.207,210

Recently, two independent studies assessed and compared
the performances of the predictors based on machine learning
techniques, using data sets of experimentally characterized
mutants with no overlap with the training sets of any of the
individual methods being tested.201,211 The results show that
sequence-based approaches are less accurate than structure-
based methods, and although DMUTANT, FOLD-X, and I-
Mutant are among the best methods for the prediction of the
sign of ΔΔGN−U, the value prediction of ΔΔGN−U remains a
critical task. Interesting progress in this direction has been
made with AUTO-MUTE212 and the new version of
PopMusic198 that implements a hybrid approach combining
statistical potentials and machine learning methods. As a
general caveat, let us recall that machine learning approaches
can be biased toward destabilizing mutations204 and may be
affected by overtraining effects. Thus, special attention must be
paid to the cross-validation procedure, the critical process that
ultimately determines the real efficiency of this class of
predictors.

Methods for the Prediction of Protein Folding
Kinetics. The growing number of experimental investigations
of protein folding have led to the development of novel
methods for the prediction of protein folding kinetics and
mechanisms. These methods are mainly based on empirical
models that take into account the topology of the protein and/
or its residue composition. More recently, machine learning
methods have been implemented to predict kf and the folding
mechanism.

Empirical Model-Based Methods. Methods implementing
empirical models are based on the observed correlation
between the logarithm of the in-water kf and some topological
parameters computed from protein 3D structure or from
closely related proteins, such as single-point mutants or
homologues with high levels of sequence identity.113,213,214 In
particular, several studies have shown that kf can be predicted
using topological properties of the protein structure such as the
contact order (CO), the long-range order (LRO), the total
contact distance (TCD), the cliquishness, and the multiple-
contact index (MCI).186 At the end of the 1990s, the
correlation between ln kf and CO in the native state of two-
state proteins (correlation coefficient of −0.81) for the first
time hinted at the importance of topology-dependent proper-
ties.186 In that work, a distance threshold of 6 Å between heavy
atoms was considered to discriminate contacting from distant
residues. Similar papers focused on the fraction of nonlocal
residue contacts with a sequence separation of >12 positions
and a distance threshold of 8 Å.215 This investigation,
performed with 23 two-state proteins, resulted in a linear
correlation coefficient between ln kf and LRO of −0.78. In a
more recent work,214 the TCD (taking into account the CO
and LRO) was the eligible topological parameter. Analysis of 28
two-state proteins has shown that the TCD is linearly
correlated with kf with a correlation coefficient of −0.88.
Testing the correlations of alternative topological properties
with experimental kinetic data revealed that parameters
measuring contact interdependence, namely cliquishness or
the clustering coefficient, can be used to predict kf values of
both two- and three-state proteins.216 Indeed, it was reported
that a combination of cliquishness and absolute CO (contact
order not normalized to protein length) correlates with ln kf
with a correlation coefficient of 0.73 over a set of 40 proteins.
In a recent work,217 it was shown that two alternative
definitions of the MCI for two- and three-state proteins
correlate with the experimental kf. This analysis, conducted over
a data set of 75 proteins, resulted in correlation coefficients of
−0.80 and −0.83 for the sets of 50 two-state and 25 three-state
proteins, respectively. New algorithms based only on protein
sequence information218,219 have been developed to render the
prediction methods independent of features relating to 3D
structures. One such method218 uses the predicted secondary
structure to calculate the effective chain length as a function of
the number of helices and number of residues in a helical
conformation. When the experimental kf was fit to the effective
length according to a power law function, the comparison
between experimental and predicted kf values resulted in a
negative correlation larger than 0.8 over a data set of 64 two-
state and multistate proteins. A further approach to the
prediction of kf capitalizes on the nonlocal residue contacts (via
the computed values of LRO normalized to the square of the
protein length) and protein sequence information.219 Quite
interestingly, the results obtained by analyzing a set of 37 two-
state proteins demonstrate that rate predictions based on
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estimated LRO values from noisy contact predictions are
almost as accurate as those deduced from the known contacts.
Machine Learning Methods. In 2006, publication of the

experimental kinetic data for the folding of more than 60
proteins made possible the first applications of machine
learning methods for the prediction of ln kf.

220,221

The physicochemical, energetic, and conformational proper-
ties of amino acid residues and the structural classification of
proteins lie at the foundation of FOLD-RATE,221 which
implements a multiple regression for predicting kf. Testing with
a jackknife procedure on 77 two- and three-state proteins
resulted in a correlation coefficient between experimental and
predicted kf values of 0.97. Soon after that K-Fold, the first
SVM algorithm for the prediction of kf and the folding
mechanism, was proposed.220 K-Fold has been tested using a 5-
fold cross-validation procedure on a set of 64 two-state and
multistate proteins. To avoid overestimation of the perform-
ance, in the cross-validation procedure homologous proteins
were grouped into the same subset. The method takes as input
a vector encoding the chain length and CO and discriminates
between two-state and multistate protein with an accuracy of

81% and a correlation coefficient of 0.60. When trained and
tested for the prediction of lnkf, K-Fold gives a correlation
coefficient of 0.74.
At present, a significant number of experimental data about

the variation of kf upon mutation are known. These data have
been incorporated into FREEDOM,222 which implements a
quadratic regression model to predict accelerating or
decelerating mutations using 12 selected amino acid features.
Tested by a 10-fold cross-validation procedure over 467
mutants, FREEDOM has an accuracy of 74% and a correlation
coefficient of 0.31.
A general comment on the reliability of these methods is in

order. Because the available number of experimental kinetic
data is still relatively limited, a definitive assessment of the
current methods is difficult. Nonetheless, in the presence of
homologous proteins in the data set, the jackknife procedure is
likely to overestimate the performance in the prediction of kf.
Thus, we suggest that a fair evaluation of the algorithms should
be made using a 5- and/or 10-fold cross-validation procedure
where homologous proteins are kept in the same subset.

Table 2. Methods and Tools for Protein Folding

name URL description ref

Protein Structure Prediction Tools and Resources
I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER structure prediction by threading 173
ModBase https://modbase.compbio.ucsf.edu/scgi/modweb.cgi repository of models predicted by homology 171
MODELER http://www.salilab.org/modeller standard homology modeling tool 169
Protein Model
Portal

http://www.proteinmodelportal.org resources and services for protein structure prediction 172

ROBETTA http://robetta.bakerlab.org de novo and homology modeling algorithm 174
Physics-Based Energy Functions

AMBER http://amber.scripps.edu molecular mechanics force field and package for
simulations

178

CHARMM http://www.charmm.org empirical atomic force fields for molecular dynamics 179
GROMOS http://www.igc.ethz.ch/gromos energy function included in GROMACS 180

Knowledge-Based Potentials
ANOLEA http://protein.bio.puc.cl/cardex/servers/anolea atomic statistical potential scoring nonlocal interactions 182
DFIRE http://sparks.informatics.iupui.edu/yueyang/DFIRE residue-specific and distance-scaled mean force potential 183
PROSA-web https://prosa.services.came.sbg.ac.at knowledge-based potential for scoring protein structures 184

Prediction of Protein Stability
AUTO-MUTE http://proteins.gmu.edu machine learning and statistical potential for ΔΔG

predictions
212

CUPSAT http://cupsat.tu-bs.de statistical potentials for the prediction of ΔΔG 193
DMUTANT http://sparks.informatics.iupui.edu/hzhou/mutation.html prediction of ΔΔG using DFIRE statistical potential 196
Fold-X http://foldx.crg.es empirical scoring function for the prediction of protein

stability
195

I-Mutant http://folding.biofold.org/i-mutant sequence and structure SVM-based method 203
PopMusic http://babylone.ulb.ac.be/popmusic neural network and statistical potential for ΔΔG

predictions
248

PreThermut http://www.mobioinfor.cn/prethermut random forest for single- and multiple-mutation
predictions

207

ProMaya http://bental.tau.ac.il/ProMaya random forest and filtering model for ΔΔG predictions 206
MuPro http://mupro.proteomics.ics.uci.edu structure-based SVM for ΔΔG predictions 205
SDM http://mordred.bioc.cam.ac.uk/sdm/sdm.php statistical potential for the prediction of ΔΔG 192
sMMGB http://compbio.clemson.edu/downloadDir/mentaldisorders/sMMGB_

pdb.rar
generalized Born method for ΔΔG predictions 200

Prediction of Folding Kinetics
FREEDOM http://bioinformatics.myweb.hinet.net/freedom.htm prediction of protein folding rate change upon mutation 222
FOLD-RATE http://psfs.cbrc.jp/fold-rate folding rate predictor based on amino acid properties 221
K-FOLD http://folding.biofold.org/k-fold SVM-based methods for folding kinetics predictions 220
SeqRate http://casp.rnet.missouri.edu/fold_rate/index.html sequence-based SVM method for folding kinetics

predictions
249

TCD http://sparks.informatics.iupui.edu/Softwares-Services_files/tcd.htm folding rate predictions based on total contact distance 214
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A summary of available Web tools discussed in this section is
reported in Table 2, while a comprehensive and updated
reference can be found in a recent review.186

■ PROTEIN FOLDING AND DISEASE

Our understanding of the protein folding mechanism becomes
even more challenging when its implications for human
morbidity are considered. In general, the formation of the
native three-dimensional structure is an obligatory step to
render the protein functional, though in certain cases the
unfolded or partially unfolded states are known to be equally
important in events such as translocation across membranes,
protein trafficking and transport, the degradation of protein
molecules,5 and the normal working conditions of enzymes.92

Several recent publications reported a broad range of
misfolding diseases,223 related to the failure of proteins to
adopt their native functional conformations. Although these
pathological conditions can operate through various mecha-
nisms, their general end result is a reduction in the quantity of
the functional protein available. The low protein concentration
may be associated with the increased probability of degradation
by the quality control system of the endoplasmic reticulum,224

improper trafficking,225 or the decreasing solubility and
formation of amyloid fibrils.226 These alternatives to the
standard folding mechanism are activated when the protein
adopts a misfolded conformation, which in general is transiently
stable. A protein can be trapped in a misfolded conformation
when a partially folded intermediate state is formed or when
interactions with other molecules are established. This scenario
is in agreement with the idea that, under particular conditions,
changes in the folding energy landscape result in the formation
of non-native protein states. Thus, biological evolution seems
to exert a kinetic control over the folding process to avoid the
formation of alternative incorrect states that may end up with
the molecular degradation or the formation of amyloids.227

In particular, understanding the aggregation process is even
more important if we consider that inside the cell, proteins are
expressed at very high concentrations and interact with a
heterogeneous environment. Contrary to in vitro experiments,
where the protein in dilute solution tends to follow a relatively
small set of rules, in vivo experiments show that proteins exhibit
a more complex behavior.228 The growing interest in misfolding
diseases led to the development of several algorithms for the
prediction of peptide and protein aggregation. The prediction
tools can be divided into two main categories: empirical and
structure-based. The empirical algorithms use individual or
combined amino acid properties such as hydrophobicity, β-
propensity, and solubility to evaluate aggregation propensities.
Alternatively, the methods based on structural information

predict amyloid aggregation analyzing available 3D structures of
peptides that are known to adopt fibrillar structures. The first
method for the prediction of in vitro experimental aggregation
data was published in 2003.229 In that study, it was found that
the change in the rate of aggregation of AcP mutants correlates
with changes in amino acid hydrophobicity, the propensity to
form α-helical and β-sheet structures, and overall charge. The
same applies to the Tango algorithm230 that predicts protein
aggregation using the physicochemical principles underlying β-
sheet formation. Tango accurately accounts for the aggregation
propensities of 179 peptides collected from the literature as
well as 71 peptides derived from human disease-related
proteins, including prion protein, lysozyme, and β2-micro-
globulin. A sequence-based method for the prediction of
protein aggregation is PASTA,231 which uses two different
propensity scores, depending on the orientation (parallel or
antiparallel) of the neighboring strands; the scores are
calculated from data sets of known native structures of globular
proteins. PASTA associates the more likely conformation
adopted by the fibril with the minimum of the two scores. In
2007, AGGRESCAN232 was developed to detect short and
specific sequences prone to aggregation and is based on an
amino acid aggregation propensity scale derived from in vivo
experiments. AGGRESCAN has been validated by comparing
experimental data for regions that promote aggregation,
experiments with fragments, and short synthetic peptides that
notoriously aggregate in vivo. The more recent Zyggregator
algorithm233 relies on a position-dependent score calculated
over a seven-residue window. The score combines amino acid
scales for α-helix and β-sheet formation, hydrophobicity, and
charge. Zyggregator, which has been optimized through fitting
aggregation data from in vivo experiments, has been successfully
tested in the prediction of the toxicity of aggregates produced
by genetic variants in Drosophila models of Alzheimer’s disease.
Further examples of tools available on the Web implementing
both empirical and structure-based algorithms are listed in
Table 3. A recent review234 reports the exhaustive assessment
of 12 methods for predicting data generated from in vitro
studies. The selected algorithms were tested on the task of the
indirect prediction of the aggregation propensity change upon
mutation that is known to inversely correlate with the
experimental solubility. Analysis of the predictions shows that
AGGRESCAN and Tango are among the best methods for the
prediction of aggregation propensity changes measured in vivo
in experiments with the Aβ42 mutants of Escherichia coli. Similar
tests conducted with experimental data from other mutated
proteins showed that the accuracy of some methods is protein-
dependent. In the same paper, the accuracy of Zyggregator has
been tested in the prediction of in vivo phenotypic effects of the

Table 3. Tools for Protein Aggregation Available on the Web

name URL description ref

Empirical Methods
AGGRESCAN http://bioinf.uab.es/aggrescan aggregation propensity scale from in vivo experiments 232
Tango http://tango.crg.es physicochemical properties of β-sheet formation in core regions 230
Zyggregator http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php physicochemical propensities of residues 233

Structure-Based Tools
BETASCAN http://groups.csail.mit.edu/cb/betascan β-strands and strand pair scores from parallel β-sheet 250
FoldAmyloid http://bioinfo.protres.ru/fold-amyloid/oga.cgi hydrogen bond probability and residue packing density 251
Net-CSSP http://cssp2.sookmyung.ac.kr β-strand propensity from buried and highly interacting regions 252
PASTA http://protein.cribi.unipd.it/pasta β-parallel and antiparallel scores for amyloid formations 231
Waltz http://waltz.switchlab.org position-specific scoring matrix to predict aggregating regions 253
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aggregating variants. The results show a strong negative
correlation between the predicted changes in aggregation
propensity upon mutation and the longevity and locomotor
ability of the model organism.
Although available methods for the prediction of peptide and

protein aggregation work with satisfactory accuracy even in the
case of in vivo experiments, more thorough testing is needed to
understand their robustness in view of their application to
large-scale protein sequence analysis.

■ CONCLUDING REMARKS AND FUTURE
PROSPECTS

The impressive proliferation of databases and computational
tools described in this review is the inescapable manifestation of
the recent exponential development of the science of proteins.
Dealing with large data sets is now a trend that is a common
feature of a wide variety of scientific fields,235 and this implies a
change in the way of doing science, requiring a suitable cultural
shift involving personal attitudes, professional expertise, and
institutional organization.236

This suggests the need for some general comments to put
the computational approach to protein folding in an overall
perspective. The novel character of this stage of science is the
rapid dissemination of large amounts of experimental and
computational results in such a way that their further
elaboration can be distributed worldwide. In a sense, this is
the materialization of the vision of H. G. Wells who more than
a century ago was dreaming of a utopia with “reports of
scientific experiments, as full, as prompt as telegraphic reports
of cricket”.237 The @Home projects (e.g., SETI@home,
Einstein@home, Rosetta@home, and Folding@home) testify
to the last frontier of such a parallelization process now
underway in many research areas.
Also the community of protein scientists experiences the fact

that experimental data are so complex or are being produced at
such a rate that exceeds by far the working capabilities of any
single laboratory or research center. Thus, the challenging task
of processing unmanageable amounts of data or conducting
time-demanding minimizations or simulations is solved in the
context of the parallel distributed processing paradigm.
Relevant implementations of such a paradigm are provided
by the PSI (protein structure initiative) and its sequel,
PSI:Biology. These are large-scale initiatives pursuing global
parallelization of research on structural and functional problems
in medicine and biology through a highly collaborative
worldwide network of laboratories and individual investigators.
Quite frequently, the computational tools are expected to

remedy the scarcity of experimental data. In these cases (e.g.,
MD simulations), according to the traditional view, theory
formulates in rigorous terms the task to be accomplished
whereas computation is ascribed a merely executive role.
However, it may happen that the computational tool is not
preliminarily programmed following a previously defined
theoretical framework but, instead, can stand on its own two
feet by virtue of some learning algorithm and the ensuing
automatic learning capability.
This fact is related to the predominantly statistical and

heuristic character of most of the computational methodologies
discussed in the previous sections. Clearly, the statistics, be they
computed in a direct fashion or automatically through machine
learning algorithms, require a set of experimental reference data
(training set) whose general properties influence the reliability
of the final results or predictions.

The general consideration that heterogeneous data generate
hardly comparable results suggests that special care should be
taken to ensure that the databases include data that satisfy as
uniformly as possible reliability requirements. On this point, it
is worth mentioning that the Critical Assessment of protein
Structure Prediction (CASP) and the Critical Assessment of
Genome Interpretation (CAGI) initiatives represent a valuable
step toward the establishment of standard assessment criteria
and the creation of a collaborative environment.
Furthermore, once the standardization requirement is met,

one should not forget that the sets of data used to implement
statistical and machine learning approaches are to be accurately
balanced to minimize the risk of generating biased results.
From all these considerations, it turns out that increasing

levels of coordination between the computational and
theoretical communities and the experimental teams are
essential for guaranteeing sensible scientific results. In the
near future, the role of scientific curator (biocurator) and
scientific animator will become extremely important. They will
serve as interfaces between humans and computers as well as
between data suppliers and data users.236,238 The basic point is
that existing data are useful only if they can be easily accessed
and logically related to each other. On top of that, we recall that
complex data are informative provided they are managed
through appropriate visualization techniques providing power-
ful means of extracting new pieces of information from torrents
of data.239

Actually, one of the noteworthy consequences of handling
large data sets is the rising awareness that data visualization239

and smart searching are the compelling complement of smart
science. Coming back to the main subject of this review, the
very fact that searching, visualizing, and researching are
becoming so strictly connected is one of the basic reasons for
our emphasis on close links between the computational and
theoretical modeling activities.
In this regard, there is an increasing number of examples that

show that dwelling on alternative ways of representing data may
be conducive to rethinking some theoretical aspects, and this
eventually opens up new paths toward understanding science as
well as communicating science.238,239 Briefly, proper (improp-
er) visualization may promote (hinder) theoretical progress as
well as viable applications of standard theories. One striking
example is the Foldit multiplayer online game that translates
the refinement of protein structures into a puzzle-solving
problem.240

The novel feature emerging from these recent developments
in protein folding research is that the visualization techniques
may happen to exceed their traditional auxiliary role and can,
instead, play a key role in unorthodox approaches to tackling
the minimization problems of protein structures. Remarkably, a
similar change has revolutionized our way of looking at the
relative weights of theory and computation. More precisely, the
machine learning approach has prompted a methodological
twist that has entailed a radical revision of the former
hierarchical paradigm envisaging the complete dependence of
computation on theory. In other words, in the traditional
approach, computation is devoted to the mere elaboration of
the theoretical premises, whereas in the scenario presented
here, computation may play a more autonomous role and even
act as a substitute for theory. For example, machine learning
algorithms can solve a variety of problems without building on
a predefined theoretical framework. In particular, ANNs
accomplish the task independently of any theoretical
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description whatsoever of the folding dynamics or the native
structures of proteins. What is essential to this discussion is the
fact that machine learning can succeed where the theoretical
approach fails operating as if they had incorporated a theory of
protein folding during the learning stage.
However, the even more intriguing feature is that the

computational techniques may suggest new perspectives
ultimately culminating in new advancements of the preexisting
theory.
The so-called “fold approach” and the FDC model are two

clarifying examples of how the computational treatment of data
has opened new avenues of research. In the former example,
extensive use of computational methods has made possible the
comparative study of homologous proteins. These investiga-
tions, in their turn, have given rise to novel theoretical
perspectives that never would have emerged from the analysis
of individual proteins.139,241

The ensuing notions such as the malleability of the folding
mechanism and the detection of specific residues responsible
for nucleation, dynamics, and intermediates bear directly on the
theoretical aspects of folding. These findings lend support to
the novel view that a continuum of folding mechanisms exists
between the extreme schemes represented by the fully
cooperative and fully hierarchical descriptions. Thus, the
long-standing dichotomy of the NC model versus the DC
model can eventually be solved. In this respect, the implications
of the fold approach are in agreement with the general unified
view consistent with the EN, HZ, and FDC models.
Another reason for furthering the synergy of theory and

computation is that notoriously blind computational treatment
of the data allows the exploration of expected and unexpected
correlations between the relevant parameters but by no means
guarantees the reduction of the processes being investigated to
first principles or to known theoretical frameworks. Nonethe-
less, this may be useful for conducting a kind of preliminary
analysis looking for putative causal relationships between
different variables, with the caveat that a mere correlation
analysis may lead to statistical fallacies because correlation is by
no means equivalent to causation. This implies that the
computational effort is to be substantiated by physics-based
modeling that permits easier identification of causal relation-
ships. A case in point mentioned in the previous sections is the
serendipitous discovery of the CO folding rate correlation with
the related follow-up of physical interpretations that clearly
exemplifies how the synergy between theory and computation
is highly desirable for the advancement of both.
A final comment is in order with regard to future directions

of protein folding studies, in light of the explosive growth of
initiatives and projects, a new generation of high-throughput
technologies, and the challenges in personal genomics242 and
personalized medicine.243,244

Within such a context, the primary tasks to be tackled are (i)
the definition of standard and unified protocols describing
protein folding mechanisms and experimental setups, (ii) the
design of large-scale high-throughput biophysics experiments245

coherent with task i, which should systematically relate the
folding process to controllable physical parameters, (iii) the
curation of publicly available databases ensuring methodolog-
ically homogeneous criteria and standardized nomenclature,
and (iv) the development of holistic approaches to the studies
of protein folding according to the multilevel perspective of
systems biology and proteomics.246

One fundamental problem still awaiting a solution is the
prediction of protein stability.245 In agreement with the
dominant trend, the most promising strategies take advantage
of large numbers either in experiments (via high-throughput
techniques) or in statistical sequence and structure analysis.
Finally, when the single protein is plunged into a metabolic
network, or in the broader scenario of a whole cell or organ,
protein scientists are confronted with the task of bridging the
divide between the outcomes of the folding models and the
multiple levels of analysis regarding the proteome, the
metabolome, or the connectome. Clearly, the relevant data
expected from investigation of the folding process should allow
one to predict the response of a protein to physical interactions
with its environment.
In this perspective, the unified picture emerging from the

converging models of the folding process provides useful
information. First, it clarifies the determinants of folding,
discriminating the hot residues seen as the accelerator pedals of
the folding mechanism from the other residues that might be
essential for function or stability. This may be beneficial for
predicting the effects of mutations. Second, it provides a
mesoscopic description of the most significant intermediates as
well as estimates of their lifetimes. Gaining knowledge of the
essential properties of these states might be useful to indicate
the possible branching points where different processes
competing with the normal folding may start. This could lead
to significant progress in the elucidation of etiology at the
molecular level of a whole class of neurodegenerative diseases.
Also, modeling the kinetics of the exposure to solvent of
selected regions of the protein may be profitable in inferring
conditions under which interactions with other proteins,
complexes, or other metabolites set in. This shifts the emphasis
to the still largely unexplored properties of the unfolded
conformations.
These improvements are conducive to a more satisfactory

description of the interactions caused by cellular crowding that
make the folding in vivo markedly different from the folding in
vitro and, in the last analysis, will prompt the development and
benchmarking of new and more comprehensive methods for
the prediction of the key features of protein folding processes
under more realistic conditions. A step toward achieving this
goal is a hybrid model that uses a combination of simulations,
coarse grained models, and experimentally determined
parameters for reproducing the effects of osmolytes and
denaturants on the protein molecule.227
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■ NOTE ADDED IN PROOF

The reader is referred to the October Festschrift issue of the
Journal of Physical Chemistry B, in honor of P.G. Wolynes,
which was published while the present paper was in proof. It

Biochemistry Current Topic

dx.doi.org/10.1021/bi4001529 | Biochemistry XXXX, XXX, XXX−XXXW



provides a useful source of recent contributions on several
theoretical topics discussed in this review.
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