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Protein Structure and Function
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ABSTRACT
Motivation: The prediction of protein stability change upon mutations
is key to understanding protein folding and misfolding. At present,
methods are available to predict stability changes only when the atomic
structure of the protein is available. Methods addressing the same
task starting from the protein sequence are, however, necessary in
order to complete genome annotation, especially in relation to single
nucleotide polymorphisms (SNPs) and related diseases.
Results: We develop a method based on support vector machines
that, starting from the protein sequence, predicts the sign and the
value of free energy stability change upon single point mutation. We
show that the accuracy of our predictor is as high as 77% in the specific
task of predicting the ��G sign related to the corresponding protein
stability. When predicting the ��G values, a satisfactory correlation
agreement with the experimental data is also found. As a final blind
benchmark, the predictor is applied to proteins with a set of disease-
related SNPs, for which thermodynamic data are also known. We
found that our predictions corroborate the view that disease-related
mutations correspond to a decrease in protein stability.
Availability: http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/
I-Mutant2.0.cgi
Contact: casadio@alma.unibo.it

1 INTRODUCTION
Protein stability change upon site-specific mutations is a relevant
problem both for protein design and for the comprehension of pro-
tein function (Daggett and Fersht, 2003). For this reason, different
methods have been described to predict stability changes observed
upon residue substitutions in the original protein sequence. They are
based mainly on the development of different energy functions and
are suited to computing the stability free energy changes in protein
structures when mutating one residue at a time in the sequence (Pre-
vost et al., 1991; Topham et al., 1997; Pitera and Kollman, 2000;
Gilis and Rooman, 1997; Kwasigroch et al., 2002; Funahashi et al.,
2001; Guerois et al., 2002; Zhou and Zhou, 2002). An alternative
approach based on a neural network (NN) system was recently pro-
posed (Capriotti et al., 2004). In this application, instead of directly
estimating the relative stability changes upon protein mutation (the
��G value), an NN predicts the direction towards which the muta-
tion shifts the stability of the protein (namely the sign of ��G). It
could be towards a positive or negative ��G value, corresponding
to an increase or decrease of stability, respectively. This predic-
tion is sufficient to evaluate the overall effect of the mutation on
the protein stability.

∗To whom correspondence should be addressed.

Other relevant thermodynamic parameters in mutagenesis are
experimental conditions such as pH and temperature (Bava et al.,
2004). In this respect, energy-based methods need to fit these para-
meters assuming that the mutations are carried out at physiological
conditions. This problem was also overpassed by the machine learn-
ing approach (Capriotti et al., 2004), which takes these variables
as input.

All the methods mentioned above are, however, limited in that
prediction can be carried out only when the protein 3D structure is
available. For wide-scale genome analysis, it is necessary to develop
applications that can predict stability variation upon mutation starting
from the protein sequence. This is particularly relevant to assessing
whether a given mutation may or may not lead to protein misfolding
and diseases (Dobson, 2003).

In this paper we develop a method based on support vector
machines (SVMs) that predicts protein stability changes due to single
point mutation starting from the sequence. Owing to the availabil-
ity of a large database of thermodynamic data for mutated proteins
(Bava et al., 2004) we are able to show that for the specific task of
predicting the ��G sign, our method reaches an accuracy value as
high as 77% and a satisfactory correlation agreement when assigning
the ��G values. Furthermore, we show that the prediction of protein
stability decrease correlates well with a blind set of thermodynamic
measurements performed with disease-related mutated chains of the
prion and transthyretin proteins.

2 METHODS

2.1 The protein database
Our data set is derived from the current release (December 2004) of the
Thermodynamic Database for Proteins and Mutants (ProTherm by Bava
et al., 2004). The data set of proteins was extracted from ProTherm with
the following constraints:

(1) the ��G value has been experimentally detected and is reported in
the database;

(2) the data are relative to single mutations (no multiple mutations have
been taken into account).

After this filtering procedure, we ended up with a data set consisting of
2048 different single mutations obtained from 64 different protein sequences.
The final set is available at http://gpcr2.biocomp.unibo.it/∼emidio/
I-Mutant2.0/dbMutSeq.html.

2.2 The data set of disease-related mutations
In order to test our predictor on the task of predicting whether diseases induced
by single point mutations can destabilize the protein folding, we collected
mutations for two experimentally well characterized proteins: the prion pro-
tein (PRIO_HUMAN) and transthyretin (TTHY_HUMAN). We collected
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all the disease-related mutations known to destabilize the protein folding
for which thermodynamic data could also be found in the literature. We
included those disease-related mutations that have been reported as having
promoted conformational changes and whose 3D structure has been deposited
in the Protein Data Bank (PDB). We ended up with 20 mutations for the two
proteins, among which some are associated with diseases such as Gerstmann–
Strussler and Creutzfeldt–Jakob syndromes and some with amyloidosis for
prion and transthyretin, respectively. These data were used as a blind test for
our predictor.

2.3 The predictor
We address two different tasks: (1) the prediction of the sign of the protein
stability change upon single point mutation and (2) the prediction of the ��G

value. The former case is a classification task, discriminating two classes as
described before (Capriotti et al., 2004). In the latter case we deal with a
regression-fitting problem. When developing methods addressing both tasks,
we adopted the same type of input. Thus, and for the user, the only difference
between tools predicting the ��G sign and those predicting the ��G values
is the output type.

Two machine learning algorithms were implemented: (1) a standard feed-
forward NN, with the back-propagation algorithm as a learning procedure,
and (2) an SVM with several kernels.

For the classification task, the NN architecture consists of a one-layer
perceptron with two hidden nodes and one output node that codifies for
the increased protein stability (��G ≥ 0, desired output set to 1) or for
the destabilizing mutation (��G < 0, desired output set to 0). The decision
threshold is set equal to 0.5. The same classification labeling and decision
threshold are used for the SVMs. Similar to the previous method for pre-
dicting stability changes starting from the protein structure (Capriotti et al.,
2004), the input vectors (the same for NN and SVM) consist of 42 val-
ues. The first two input values account for the temperature and the pH at
which the stability of the mutated protein was measured. The next 20 (the
20 residue types) explicitly define the mutation: we set to −1 the element
corresponding to the deleted residue and to 1 the new introduced residue
(all the remaining elements are kept equal to 0). The final 20 input values
encode the sequence residue environment (again the 20 neurons represent the
20 residue types). Each of these input neurons is provided with the number of
the encoded residue type, to be found inside a window centered at the residue
that undergoes the mutation and that symmetrically spans the sequence to the
left (N-terminus) and to the right (C-terminus) with variable lengths from 7
to 23 residues.

The NNs are our own implemented software. For the SVM implement-
ation we use LIBSVM (http://www.csie.ntu.edu.tw/∼cjlin/). We tested the
following available kernels:

Linear K(xi , xj ) = xiTxj ;
Polynomial K(xi , xj ) = (GxiTxj + r)d ;
Sigmoid K(xi , xj ) = tan h(GxiTxj + r);
RBF K(xi , xj ) = exp(−G||xi − xj ||2).

When assigning the ��G values, only the SVM with the RBF kernel is
considered. The same input of the classification task is adopted. In this case
the SVMs directly compute the regression and the output is the predicted
��G value for a given mutation.

2.4 Scoring the performance
Results obtained with NNs and SVMs are evaluated using a cross-validation
procedure on the data set. The reported data for the classification and regres-
sion tasks are obtained adopting a 20-fold cross-validation procedure; we also
adopted larger and smaller divisions (from 10- to 30-fold cross-validation) in
order to asses the stability of the methods and found no difference. Grouping
of the data into sets for cross-validation was performed in such a way that the
positive and the negative examples respected the original distribution of the
whole set. Furthermore, we kept the same mutations (when reported at dif-
ferent experimental conditions) in the same set to prevent an overestimation

of the results. For each tested method we adopted the same cross-validation
sets; thus, results obtained with different methods can be directly compared
since testing was done under the same conditions.

Several measures of accuracy are routinely used. For sake of completeness,
here we review the ones adopted in this paper. The efficiency of the predictor
is scored using the statistical indexes defined below.

The overall accuracy is
Q2 = p/N (1)

where p is the total number of correctly predicted residues and N is the total
number of residues.

The correlation coefficient C is defined as

C(s) = [p(s)n(s) − u(s)o(s)]/D (2)

where D is the normalization factor

D = [(p(s) + u(s))(p(s) + o(s))(n(s) + u(s))(n(s) + o(s))]1/2 (3)

for each class s (+ and − for positive and negative ��G values, respectively);
p(s) and n(s) are the total number of correct predictions and correctly rejected
assignments, respectively, and u(s) and o(s) are the numbers of under- and
overpredictions.

The coverage for each discriminated structure s is evaluated as

Q(s) = p(s)/[p(s) + u(s)] (4)

where p(s) and u(s) are the same as in Equation (2).
The probability of correct predictions P(s) (or accuracy for s) is

computed as
P(s) = p(s)/[p(s) + o(s)] (5)

where p(s) and o(s) are the same as in Equation (2) (ranging from 1 to 0).
The reliability score for each network prediction is also assigned. With one

output NN this is obtained by computing

Rel(i) = 20∗abs(O(i) − 0.5) (6)

For computing regression we use the standard correlation (R) and root
mean squared standard error (RMSE) values.

3 RESULTS AND DISCUSSION

3.1 Predicting the sign of the protein stability change
from sequence

We have previously shown that with an NN-based method over 80%
of the mutations in a data set containing 1615 examples were cor-
rectly assigned provided that the protein 3D structure was known
(Capriotti et al., 2004). In this paper we focus on the protein sequence
and predict whether a mutation along the sequence increases or
decreases the corresponding protein stability without referring to
the 3D structure. The results obtained with the different machine
learning predictors specifically developed for this task are reported
and compared in Table 1. It is interesting to notice that even though
the information is only relative to the sequence, an SVM endowed
with an RBF kernel reaches an accuracy of 0.77, with a correlation
coefficient of 0.42. This finding indicates that a piece of informa-
tion relevant to the protein folding stability can be traced back to
the sequence nearest neighbors of the residue that undergoes muta-
tion. Apparently the RBF kernel is better suited to this task than
others. This may indicate that this kernel type properly captures the
underlying properties in the residue local environment conducive to
the protein stability/instability related also to temperature and pH
(routinely physiological) at which mutation occurs.

In Table 2 we show that the best accuracy is reached when the
sequence window is 19 residues long. In Table 2 we also test the
information pertaining to an infinite window by including the effect
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Table 1. Cross-validation performance of the NN and SVM

Method Q2 P(+) Q(+) P (−) Q(−) C

NeuralNet 0.73 0.39 0.56 0.77 0.87 0.30
SVM-linear 0.67 0.41 0.28 0.73 0.84 0.13
SVM-polynomial 0.73 0.58 0.38 0.77 0.88 0.30
SVM-sigmoid 0.68 0.44 0.27 0.73 0.85 0.15
SVM-RBF 0.77 0.69 0.46 0.79 0.91 0.42

+ and −: the index is evaluated for positive and negative signs of the protein free energy
stability change; for the definition of the different indexes see Section 2.3. The window
length for both methods included 19 residues.

Table 2. Cross-validation performance of different window lengths using a
RBF kernel

Window Q2 P(+) Q(+) P (−) Q(−) C

7 0.74 0.58 0.36 0.77 0.89 0.30
11 0.73 0.85 0.12 0.73 0.99 0.25
15 0.76 0.64 0.38 0.78 0.91 0.35
19 0.77 0.69 0.46 0.79 0.91 0.42
23 0.76 0.64 0.44 0.79 0.90 0.38
Whole sequence 0.73 0.59 0.32 0.76 0.90 0.28

For notation see Table 1.

Table 3. Q2 accuracy as a function of the mutated residue type

Native\new Charged Polar Apolar

Charged 0.65 (4%) 0.72 (7%) 0.69 (12%)
Polar 0.57 (5%) 0.76 (5%) 0.77 (13%)
Apolar 0.80 (5%) 0.88 (9%) 0.80 (40%)

Each cell represents a particular type of mutation classified according to chemico-
physical properties. Rows account for the wild-type residue (native) and the column
positions define the new residues in the mutant proteins (new). In brackets the relative
fraction in the protein set (2048) of a given residue type is shown.

of the whole sequence. It is evident that the accuracy diminishes, and
this indicates that the whole sequence composition is not as specific
as the local sequence environment in terms of determining the sign
of the stability change. Also in this case the correlation coefficient is
different from random.

The analysis of the SVM accuracy as a function of the
chemico-physical properties of the mutations indicates that the
protein stability changes involving charged/charged, polar/charged
and charged/apolar mutations score lower than those involving
apolar/apolar swaps (Table 3), and this suggests that for charged
and polar residues at the surface or for charged residues involved in
salt-bridges, more information than the local sequence environment
is necessary for a high predictive score.

The overall Q2 accuracy is computed as a function of the reliabil-
ity index (Rel). This identifies a relationship between the reliability
value and the predictor accuracy, as shown in Figure 1. The value
of the reliability index and its relationship to the prediction accuracy
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Fig. 1. Q2 accuracy of SVM-RBF as a function of the reliability index (Rel)
of the prediction [Equation (6)]. DB is the fraction of the data set with Rel
values higher or equal to a given threshold.
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Fig. 2. Regression between predicted and expected values of free energy
change upon mutation starting from the protein sequence [R = 0.62,
RMSE = 1.45 (0.422x − 0.515) Kcal/mol].

may help in selecting which mutations are more suited to increasing
or decreasing protein stability in a rational computer-aided protein
design even at the genomic level.

3.2 Predicting the free energy values of protein
stability change from sequence

In specific cases, not only the sign of the mutation but also the
exact value of the free energy stability change may be necessary for
selecting the mutation type. We have previously shown that coup-
ling machine learning with energy-based methods could provide an
excellent solution to this problem (Capriotti et al., 2004). However,
this is restricted to the small subset of proteins for which a 3D struc-
ture is available. Since the aim of this paper is to extend the prediction
of stability changes upon mutation to the sequence space, we also
implement a SVM that predicts the exact ��G values. This is done
using the ν-regression SVM with RBF kernel (libSVM).

In Figure 2 we show the regression between the predicted and
the expected ��G values. Predictions are obtained using a 20-fold
cross-validation. The R (regression) value is equal to 0.62 with a
RMSE of 1.45 Kcal/mol. It should be stressed that this correlation
is obtained by starting from the protein sequence and that to our
knowledge this is the first method capable of performing the task at
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Table 4. Prediction of disease-related mutations

Protein Mutation Effect Predicted Rel Experimental Ref.
stability change ��G (Kcal/mol)

Human prion
(PRIO_HUMAN)

P102L GSD Increase 2 0.2 ± 0.6 Apetri et al. (2004)
M129V Polymorphism Decrease 6 −0.3 ± 0.5 Liemann and Glockshuber (1999)
V180I GSD Decrease 2 −0.5 ± 0.4 Liemann and Glockshuber (1999)
T183A CJD Decrease 6 −4.6 ± 0.7 Liemann and Glockshuber (1999)
T190V Polymorphism Decrease 2 0.2 ± 0.6 Liemann and Glockshuber (1999)
F198S GSD Decrease 7 −2.5 ± 0.4 Liemann and Glockshuber (1999)
E200K CJD Decrease 5 −0.1 ± 0.6 Liemann and Glockshuber (1999)
R208H CJD Decrease 7 −1.4 ± 0.6 Liemann and Glockshuber (1999)
V210I CJD Decrease 2 −0.3 ± 0.6 Liemann and Glockshuber (1999)
Q217R GSD Increase 1 −2.1 ± 0.4 Liemann and Glockshuber (1999)
M166V Polymorphism Decrease 6 SC(1E1J) Calzolai et al. (2000)
S170N Polymorphism Increase 1 SC(1E1P) Calzolai et al. (2000)
R220K Polymorphism Decrease 7 SC(1FKC) Calzolai et al. (2000)

Transthyretin
(TTHY_HUMAN)

V50M Amyloidosis Decrease 6 −2.2 ± 2.4 Shnyrov et al. (2000)
L75P Amyloidosis Decrease 5 −1.5 ± 2.3 Shnyrov et al. (2000)
T139M Unclassified Decrease 0 −0.1 ± 2.8 Shnyrov et al. (2000)
T80A Amyloidosis Decrease 6 SC(1TSH) a
S97Y Amyloidosis Increase 2 SC(2TRY) a
Y134C Amyloidosis Increase 0 SC(1IIK) a
V142I Unclassified Decrease 2 SC(1TTR) a

GSD, Gerstmann–Straussler disease; CJD, Creutzfeldt–Jakob disease; Rel, reliability index (see Measure of Accuracy); SC, structural conformational changes determined by comparing
the native (1QLX, human prion protein; 1BM7, human transthyretin) with the mutated 3D structures (PDB codes are reported within parentheses); a, derived by comparison between
the native structure and the mutated as reported in the PDB files through the SWISSPROT links. Bold lettering indicate the subset of mutations in which the ��G values is
≥0.5 Kcal/mol.

hand at this level of efficiency. For this reason we suggest that our
approach can be successfully applied when protein structures are not
available and thermodynamic data on protein stability need to be
analyzed in terms of molecular properties.

3.3 Disease-related single nucleotide polymorphisms
and the prediction of protein stability changes

Evidence is accumulating that many disease-causing mutations exert
their effects by altering protein folding (Wang and Moult, 2001,
2003; Dobson, 2003; Selkoe, 2003). An interesting application of
our method is therefore the prediction of protein stability changes
when mutations are known to correlate to diseases.

In Table 4 the predicted thermodynamic data for 20 mutations
of the human prion protein and human transthyretin are shown and
either compared with the experimental ��G values, when available,
or related to conformational changes, when known with atomic res-
olution. The sign of the stability change is correctly predicted in all
cases but two, with a correlation coefficient of 0.42. On this blind
test the performance is similar to that on the training/testing set.

It is also interesting to note that the protein stability decrease upon
mutation correlates with maladies in 77% of the experimental data.
Moreover, if we focus only on the subset in which the ��G changes
are ≥0.5 Kcal/mol, all the mutations correspond to diseases. On this
subset of experimental data, our predictor fails only in one case to
assign the correct ��G sign. However, if we sort the predictions by

the reliability index value, all the predictions made with reliability
index >2 agree with the experimental data. The results of this test are
therefore in agreement with the general idea that defective protein
folding is one of the causes of human diseases and suggest also a
possible application of this predictor to correlate single nucleotide
polymorphisms and diseases related to protein instability.
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