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ABSTRACT
Motivation: One important requirement for protein design is
to be able to predict changes of protein stability upon mutation.
Different methods addressing this task have been described
and their performance tested considering global linear correla-
tion between predicted and experimental data. Neither is direct
statistical evaluation of their prediction performance available,
nor is a direct comparison among different approaches pos-
sible. Recently, a significant database of thermodynamic data
on protein stability changes upon single point mutation has
been generated (ProTherm). This allows the application of
machine learning techniques to predicting free energy stability
changes upon mutation starting from the protein sequence.
Results: In this paper, we present a neural-network-based
method to predict if a given mutation increases or decreases
the protein thermodynamic stability with respect to the nat-
ive structure. Using a dataset consisting of 1615 mutations,
our predictor correctly classifies >80% of the mutations in
the database. On the same task and using the same data,
our predictor performs better than other methods available on
the Web. Moreover, when our system is coupled with energy-
based methods, the joint prediction accuracy increases up to
90% , suggesting that it can be used to increase also the per-
formance of pre-existing methods, and generally to improve
protein design strategies.
Availability: The server is under construction and will be
available at http://www.biocomp.unibo.it
Contact: piero.fariselli@unibo.it

1 INTRODUCTION
The comprehension of the rules that govern protein stabil-
ity is one of the long-term goals of protein structure analysis
(Daggett and Fersht, 2003). This would also help in protein
designing. For these reasons, so far different methods have
been described to predict stability changes observed upon
residue substitution in the original protein sequence. They
are mainly based on the development of different energy
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functions, suited to compute the stability free energy changes
due to substitution of one residue at a time in the protein
sequence (mutation).

Force fields previously described can be grouped into three
major categories depending on the energy functions (Guerois
et al., 2002): (1) physically effective energy functions (Prevost
et al., 1991; Pitera and Kollman, 2000); (2) statistical poten-
tial energy functions (Gilis and Rooman, 1997; Kwasigroch
et al., 2002); and (3) empirically defined energy functions
(Funahashi et al., 2001; Guerois et al., 2002; Zhou and Zhou,
2002). The major drawback of methods based on physically
effective energy functions (Prevost et al., 1991; Pitera and
Kollman, 2000) is that they are computationally intensive so
that their usage is nearly prohibitive for applications and/or
screening on a large scale (Guerois et al., 2002). For this
reason, only the last two types of energy functions can prac-
tically be applied for evaluating protein stability on a large
dataset (Gilis and Rooman, 1997; Funahashi et al., 2001;
Guerois et al., 2002; Zhou and Zhou, 2002).

Energy-based methods routinely compute the relative stab-
ility changes upon protein mutation (��G). Their accuracy
towards the experimental database is then evaluated by con-
sidering the correlation between the predicted data against
the experimental ones. Global correlation can be as high as
95% depending on the selected mutation database (Guerois
et al., 2002). In many instances, for modelling protein stabil-
ity, it would be convenient to know the reliability of a method
and the statistical scores associated with any predicted val-
ues of free energy stability change upon single point mutation
(single residue substitution) in a given protein chain. Indeed
any predicted ��G consists of a numerical absolute value
(the amount of stability change) and of a sign, namely, the
prediction of the direction in which the mutation will shift the
stability of the protein (either towards a positive or negative
��G value, corresponding to an increase or decrease in stab-
ility, respectively). The correct prediction of the direction of
the stability change is therefore more relevant than its absolute
value for the problem at hand. A linear correlation between
predicted and experimental data, although exceedingly good,
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does not provide direct indication of the correctness of the
��G sign.

Other relevant thermodynamic parameters in mutagenesis
are experimental conditions, such as pH and temperature
(Gromiha et al., 2000). In this respect, energy-based methods
need to fit these parameters assuming that the mutations are
carried out at physiological conditions. This limitation can be
also overpassed using machine learning approaches.

Thanks to the availability of a large database of thermo-
dynamic data of mutated proteins (Gromiha et al., 2000),
it is now possible to apply machine learning techniques to
the relevant problem of predicting protein stability changes
upon single point mutations. We reported previously how
protein stability from sequence alone (Casadio et al., 1995)
should be predicted. Here, we develop a neural-network-based
method to predict if a given mutation increases or decreases
the native protein stability, taking also into account the three-
dimensional structure of the protein and focusing specifically
on the prediction of the sign of the ��G value. We show that
it reaches accuracy as high as 81% and in the specific task of
predicting the ��G sign, it performs better than the avail-
able energy-based methods. Moreover, we show that when it
is coupled with energy-based predictors the accuracy of the
joint method significantly increases with respect to that of the
original ones.

2 SYSTEMS AND METHODS
2.1 The protein database
Our dataset is derived from the current release (July 2003)
of the Thermodynamic Database for Proteins and Mutants
[ProTherm by Gromiha et al. (2000)]. We considered two
datasets: the first for training/testing our neural network sys-
tem (S1615), and the second (a subset of the first), to be used in
a testing phase with cross-validation procedure for compar-
ison with other available predictors, considering mutations
only at physiological conditions (S388).

The dataset of proteins was extracted from ProTherm, with
the following constraints:

(1) the ��G value was experimentally detected and repor-
ted in the database;

(2) the protein structure is known with atomic resolu-
tion [and deposited in the Problem Data Bank (PDB)
(Berman et al., 2000)];

(3) the data are relative to single mutations (no multiple
mutations have been taken into account).

After this filtering procedure, we end up with a dataset consist-
ing of 1615 (S1615) different single mutations obtained from
42 different protein sequences, known with atomic resolu-
tion. The second set, containing only experiments performed
at physiological conditions, namely temperatures in the range
of 20–40◦C, and pH values in the range of 6–8, is a subset of

S1615 and consists of 388 mutations (S388) from 17 different
protein sequences. This was generated in order to compare our
method with those that consider only the effects of mutations
under physiological conditions. The final S388 and S1615 sets
are available at http://www.biocomp.unibo.it/piero/ddgp/

2.2 The neural-network-based predictor
Our task is to predict whether a given mutation increases or
decreases the protein stability, without predicting the exact
��G value. In this respect, the task can be cast as a clas-
sification problem for the protein upon mutation. To address
this issue we use standard feed-forward neural networks, with
the back-propagation algorithm as a learning procedure. The
network architecture consists of a one-layer perceptron with
two hidden nodes and one output node, that codifies for the
increased protein stability(��G > 0, desired output set to 1)
or for the destabilising mutation (��G < 0, desired output
set to 0). The decision threshold is set equal to 0.5.

In order to highlight the major features responsible for pro-
tein stability changes upon mutation, we introduced different
input encodings, which are listed below (in order of increasing
complexity).

N1 consists of 22 input neurons, 2 of which account respect-
ively for the temperature and the pH at which the stability of
the mutated protein was measured, while the other 20 nodes
explicitly define the mutation. These 20 elements code for the
corresponding 20 amino acid residues, so that given a residue
mutation, we set to -1 the element corresponding to the deleted
residue and to 1 the new introduced residue (all the remaining
elements are kept equal to 0).

N2 adds to the N1 input one more neuron that accounts
for the relative accessibility of the mutated residue computed
with the DSSP program (Kabsch and Sander, 1983). This
information can be very profitable, since it has been shown
that residues at the surface of a protein routinely contribute
less to the protein stability than those in the core (Guerois
et al., 2002).

Finally, N3 uses 20 more input neurons (43 in total) encod-
ing the three-dimensional residue environment (again the
20 neurons represent the 20 residue types). Each of this input
neuron is provided with the number of the encoded residue
type, found inside a sphere of radius T , which is centred in
the mutated residue and is taken from the corresponding pro-
tein structure. More formally, given a residue in the sequence
position i of coordinate r(i), the element a of the input vector
V (of 20 components) is computed as

V (a) = �jδ[type(j), type(a)]ρ[r(i), r(j), R] (1)

where j spans the protein length; δ[type(j), type(a)] is set
equal to 1 only when the residue in position j is equal to
type a; ρ[r(i), r(j), R] is also set to 1 only if the Euclidean
distance between r(i) and r(j) is lower than the threshold R

(the sphere radius). To compute Equation (1), we use a full-
atom representation of the protein (without hydrogen atoms)
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(Fariselli and Casadio, 1999) and different values of the sphere
radius (R), to include the effect of different contact residues
(Pollastri et al., 2002).

2.3 Scoring the performance
All the results obtained with our neural network systems are
evaluated using a cross-validation procedure on the S1615
dataset.

Several measures of accuracy are routinely used. For sake
of completeness here we review the ones adopted in this paper.
The efficiency of the predictor is scored using the statistical
indexes defined in the following. The overall accuracy is

Q2 = p/N , (2)

where p is the total number of correctly predicted residues
and N is the total number of residues.

The correlation coefficient C is defined as

C(s) = [p(s)n(s) − u(s)o(s)]
D

, (3)

where D is the normalization factor

D = {[p(s)+u(s)][p(s)+o(s)][n(s)+u(s)][n(s)+o(s)]}1/2

(4)
for each class s(+ and −, for positive and negative ��G

values, respectively); p(s) and n(s) are the total number
of correct predictions and correctly rejected assignments,
respectively, and u(s) and o(s) are the numbers of under and
over predictions.

The coverage for each discriminated structure s is evalu-
ated as

Q(s) = p(s)
/

[p(s) + u(s)], (5)

where p(s) and u(s) are the same as in Equation (3). The
probability of correct predictions P(s) (or accuracy for s) is
computed as

P(s) = p(s)

[p(s) + o(s)] , (6)

where p(s) and o(s) are the same as in Equation (3) (ranging
from 1 to 0).

Finally, it is very important to assign a reliability score to
each network prediction. With one output neural network this
is obtained by computing

Rel(i) = 20 ∗ abs[O(i) − 0.5], (7)

where O(i) is the network output.

3 RESULTS AND DISCUSSION
3.1 The effect of the local spatial environment
In the database, mutations per protein are related to the protein
stability energy change (��G). Therefore, a first general-
ization that the network can perform depending on the pH
and temperature is how relevant to the protein stability the
mutation type is, independent of the protein context.

Table 1. Cross-validation performance of the different neural networks on
S1615

Method Q2 P(+) Q(+) P(−) Q(−) C

N1 0.74 0.59 0.23 0.76 0.94 0.24
N2 0.75 0.57 0.45 0.80 0.87 0.34
N3 0.79 0.63 0.55 0.83 0.88 0.45

+ and −: the index is evaluated for positive and negative signs of protein energy stability
change, respectively; for the definition of the different indexes see the System and
Methods section.

Network N1 indeed generalizes over this information, and
its accuracy depends only on the mutation itself. From Table 1,
we can note that N1 can correctly predict 74% of the dataset,
indicating that the pairwise mutation that is given as input to
the network carries already information relevant to correctly
predict the ��G sign. When the network input includes the
information relative to the solvent accessibility value of the
mutated residue (N2), the prediction slightly improves, as
indicated by the increase of the correlation coefficient value
listed in Table 1 (from 0.24 to 0.34).

This finding is in agreement with the common view that
protein stability would be more dependent on buried residues
than on solvent-exposed ones (Guerois et al., 2002; Zhou and
Zhou, 2004).

With N3 the three-dimensional environment of the mutated
residue is taken into account. In this case (Fig. 1), the local
environment of the residue undergoing mutation is evaluated
by considering all the contact residues within different contact
distances. We adopt an all-atom representation of the protein
and we started with a local three-dimensional environment
computed by setting the sphere radius equal to 4.5 Å. This
threshold identifies the largest shell that does not allow a water
molecule to be inserted between two residues (Fariselli and
Casadio, 1999). It is evident that this information promotes
an increase of the accuracy up to 79% and of the correlation
coefficient up to 0.45, 20 percentage points higher than that
obtained using the level of knowledge encoded in N1 (results
obtained with N3 in Table 1).

In Table 2, we investigate the effect of enlarging the three-
dimensional environment by increasing the sphere radius from
4.5 to 12.0 Å [R in Equation (1)]. It is worth noticing that
there is an optimal radius value corresponding to 9.0 Å. In
this case, N3 can correctly predict >80% of the dataset with
a correlation coefficient of 0.49.

As in the case of other neural-network-based predictors,
the overall Q2 accuracy can be computed as function of the
reliability index (Rel) (Fig. 2). This identifies a relationship
between the reliability value and the predictor accuracy, that
may help in selecting which mutations are more suited to
increase or decrease protein stability in a rational computer-
aided protein design.
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Fig. 1. N3 input encoding includes the mutation type (20 element vector); the local spatial environment (20 element vector) as defined in
Equation (1); the relative solvent accessibility value (RSA); and the experimental conditions at which the mutation was carried out [pH and
the temperature (Temp)].

Table 2. Cross-validation performance of N3 as a function of different
protein environments centred on the mutated residue

Method R(Å) Q2 P(+) Q(+) P(−) Q(−) C

N3-4.5 4.5 0.79 0.63 0.55 0.83 0.88 0.45
N3-6.0 6.0 0.79 0.63 0.57 0.84 0.87 0.46
N3-9.0 9.0 0.81 0.71 0.52 0.83 0.91 0.49
N3-12.0 12.0 0.79 0.63 0.59 0.84 0.87 0.47

R = radius [Equation (1)]. For notation see Table 1.

Our approach presently does not take into account the
change in environment (local structure) that can occur upon
protein mutation, since the environment description is essen-
tially derived from the native protein, before mutation.
Nevertheless this approximation is sufficient to increase the
predictive capability of the system, indicating that the network
is able to satisfactorily relate the mutation type, the structural
environment in the native protein and the correspondent ��G

sign upon mutation.

3.2 Comparison with other methods
Differently from our approach, all the methods available use
the molecular protein structure at different level of representa-
tion for predicting the ��G values after the protein mutation
(Gilis and Rooman, 1997; Funahashi et al., 2001; Guerois
et al., 2002; Kwasigroch et al., 2002; Zhou and Zhou, 2002).
In this respect a direct comparison between other methods and
ours is not feasible.
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Fig. 2. Q2 accuracy of neural network (N3-9.0) as a function of the
reliability index (Rel) of the prediction [Equation(7)]. DB% is the
percentage of the dataset with Rel values higher or equal to a given
threshold.

However, since the feature that our predictor highlights
is the direction (sign) of the stability change, we com-
pare the N3-9.0 predictions with those computed using
the three presently available web servers, implement-
ing some of the energy-functions-based methods: FOLDX
(Guerois et al., 2002); DFIRE (Zhou and Zhou, 2002) and
PoPMuSiC (Gilis and Rooman, 1997; Kwasigroch et al.,
2002). All the servers are compared in the task of predicting

i66



Prediction of protein stability changes upon mutations

Table 3. Comparison of neural network with other methods on S388

Method Q2 P(+) Q(+) P(−) Q(−) C

FOLDXa 0.75 0.26 0.56 0.93 0.78 0.25
DFIREb 0.68 0.18 0.44 0.90 0.71 0.11
PoPMuSiCc 0.85 0.33 0.25 0.90 0.93 0.20
N3-9.0 0.87 0.44 0.21 0.90 0.96 0.25

For notation see Table 1.
ahttp://fold-x.embl-heidelberg.de
bhttp://phyyz4.med.buffalo.edu/hzhou/dmutation.html
chttp://babylone.ulb.ac.be/popmusic/.

if a given mutation increases or decreases the protein stability
(using only the sign of the prediction).

In Table 3, we show the results obtained with N3-9.0 (testing
on Subset S388, that contains only mutations at physiological
conditions and in order to compare with the web predictors
that do not take into account the pH and temperature depend-
ence). All the methods, with exception of our predictor and
PoPMuSiC (that it is not trained on ��G values) were used
without considering if a given mutation had been included or
not in the training set. The results reported in Table 3 show
that N3-9.0, for this specific task, performs similarly or better
than the other methods. This indicates that the N3 neural net-
work is capable of extracting features from the data that are
qualitatively comparable to those explicitly introduced using
energy functions.

3.3 Analysis of the prediction
Focusing on N3-9.0 performance, we analyse the quality and
the major characteristics of the N3 predictions. In Figure 3, we
report the Q2 accuracy values as a function of the experimental
��G absolute values derived from the database (the larger
the value the greater the stability change). It is worth noticing
that even though no information about the experimental ��G

values was provided to the network, the accuracy is lower for
the smaller changes and higher for the larger ones. This finding
suggests that the approximation of our approach (including
the relevance of the protein environment) holds particularly
for large changes of protein stability, that are also the most
relevant to be predicted for the in silico molecular design.

In Figure 4, N3-9.0 accuracy (Q2) is plotted as a function of
the solvent accessibility value of the mutated residue. Appar-
ently, the sign of protein stability change upon exposed residue
mutation (with a solvent accessibility value > 60%) is on aver-
age more difficult to be predicted than that of less-exposed
residues. Our finding is in agreement with previous observa-
tions (Guerois et al., 2002; Zhou and Zhou, 2004) indicating
that mutated residues at the surface behave differently from
those buried and their effect on protein stability is more
difficult to predict. At variance, PoPMuSiC obtains better
results for mutation of highly exposed residues than for those

0

0.2

0.4

0.6

0.8

1

<0.5 1 2 >2

| Stability Change |

Q2
DB(%)

Fig. 3. Q2 accuracy of neural network (N3-9.0) as a function of the
absolute value of protein stability changes upon mutation (|Stability
Change| = is the absolute value of the stability change upon mutation
(��G). DB% is the percentage of the dataset that falls in a specific
range of |Stability Change|.
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Fig. 4. Q2 accuracy of the neural network (N3-9.0) as a function
of the relative accessibility value of the mutated residue. DB% is
the percentage of the data with a given relative solvent accessibility
value.

of buried residues (Gilis and Rooman, 1997; Guerois et al.,
2002).

In Table 4, the accuracy on N3-9.0 is also shown as a
function of the chemical–physical type of residue mutation
(from charged, polar and apolar residues to charged, polar
and apolar, respectively).

Apparently it is more difficult to predict the protein stabil-
ity change in the case of the charged/charged or polar/charged
mutation than in other cases (as indicated by lower accuracy
values). Since the frequency of occurrence of polar and
charged residues is on average higher on the protein solvent
accessibility surface, the results shown in Table 4 are again
consistent with the observation (above) that our predictor is
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Table 4. Q2 accuracy as a function of the residue mutation type

Native\new Charged Polar Apolar

Charged 0.62 (4%) 0.77 (8%) 0.72 (9%)
Polar 0.69 (6%) 0.82 (10%) 0.77 (17%)
Apolar 0.75 (3%) 0.92 (12%) 0.87 (31%)

Each cell represents a particular type of mutation classified according to chemico-
physical properties. Rows account for the wild-type residue, while the column positions
define the new residues in the mutant proteins (new). In parentheses, the relative
frequency in the S1615 dataset of a given residue type is shown.

Table 5. Accuracy of joint-methods on subsets of S388

Method Agree Q2 P(+) Q(+) P(−) Q(−) C

N3-9.0+FOLDXa 72% 0.93 0.88 0.28 0.93 0.99 0.47
N3-9.0+DFIREb 69% 0.90 0.36 0.16 0.92 0.97 0.19
N3-9.0+PoPMSiCc 86% 0.91 0.67 0.07 0.92 0.99 0.19

Agree = percentage of cases on which both methods agree on the predicted sign of
protein stability change. The statistical indices are evaluated on the agreement subset.
For notation see Table 3.

more accurate in predicting residues characterized by low
solvent accessibility values.

3.4 Combining the neural network with the
energy-based predictors

N3-9.0 is then used to select predictions of the existing energy-
based methods with the criterion that only ��G values with
the same sign of that predicted by the network are accepted
and included in a subset of S388 named Agreement in Table 5.
This procedure is applied by combining the network acting as
a filter to the methods scored in Table 3, and the predictions
are then re-scored (Table 5). Apparently the joint predic-
tions improve the overall performance of the energy-based
methods; for example a Q2 of 93% is obtained in the case of
FOLDX+N3-9.0, with a probability value of 88% [P(+)] for
correctly assigning a predicted mutation that increases protein
stability.

Our results, altogether, suggest that a neural-network-based
system, also combined with energy-based methods, can be
used to properly address the problem of detecting protein sta-
bility change upon mutation and to make a step forward in the
prediction task.

ACKNOWLEDGEMENTS
This work was supported by the following grants delivered
to R.C.: ‘Hydrolases from Thermophiles: Structure, Function
and Homologous and Heterologous Expression’ and the pro-
ject ‘Development and implementation of algorithms for
predicting protein structure’ of the Ministero della Università

e della Ricerca Scientifica e Tecnologica (MURST), Molecu-
lar Genetics and Functional Genomics, both of the Italian
Centro Nazionale delle Ricerche (CNR), and a PNR 2001–
2003 (FIRB art.8) project on Postgenomics. E.C. is supported
by a grant delivered by a FISR2002 project to R.C.

REFERENCES
Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,

Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

Casadio,R., Compiani,M., Fariselli,P. and Vivarelli,F. (1995)
Predicting free energy contributions to the conformational sta-
bility of folded proteins from the residue sequence with radial
basis function networks. Proc. Int. Conf. Intell. Syst. Mol. Biol.,
3, 81–88.

Daggett,V. and Fersht,A.R. (2003) Is there a unifying mechanism for
protein folding? Trends Biochem. Sci., 28, 18–25.

Fariselli,P. and Casadio,R. (1999) Neural network based predictor of
residue contacts in proteins. Protein Eng., 12, 15–21.

Funahashi,J., Takano,K. and Yutani,K. (2001) Are the parameters
of various stabilization factors estimated from mutant human
lysozymes compatible with other proteins? Protein Eng., 14,
127–134.

Gilis,D. and Rooman,M. (1997) Predicting protein stability changes
upon mutation using database-derived potentials: solvent access-
ibility determines the importance of local versus non-local
interactions along the sequence. J. Mol. Biol., 272, 276–290.

Gromiha,M.M., An,J., Kono,H., Oobatake,M., Uedaira,H.,
Prabakaran,P. and Sarai,A. (2000) ProTherm, version 2.0:
thermodynamic database for proteins and mutants. Nucleic Acids
Res., 28, 283–285.

Guerois,R., Nielsen,J.E. and Serrano,L. (2002) Predicting changes
in the stability of proteins and protein complexes: a study of more
than 1000 mutations. J. Mol. Biol., 320, 369–387.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary
structure: pattern of hydrogen-bonded and geometrical features.
Biopolymers, 22, 2577–2637.

Kwasigroch,J.M., Gilis,D., Dehouck,Y. and Rooman,M. (2002) PoP-
MuSiC, rationally designing point mutations in protein structures.
Bioinformatics, 18, 1701–1702.

Pitera,J.W. and Kollman,P.A (2000) Exhaustive mutagenesis in
silico: multicoordinate free energy calculations on proteins and
peptides. Proteins, 41, 385–397.

Pollastri,G., Baldi,P., Fariselli,P. and Casadio,R. (2002) Prediction of
coordination number and relative solvent accessibility in proteins.
Proteins, 47, 142–153.

Prevost,M., Wodak,S.J., Tidor,B. and Karplus,M. (1991) Contribu-
tion of the hydrophobic effect to protein stability: analysis based
on simulations of the Ile-96-Ala mutation in barnase. Proc. Natl
Acad. Sci. USA, 88, 10880–10884.

Zhou,H. and Zhou,Y. (2002) Distance-scaled, finite ideal-gas ref-
erence state improves structure-derived potentials of mean force
for structure selection and stability prediction. Protein Sci., 11,
2714–2726.

Zhou,H. and Zhou,Y. (2004) Quantifying the effect of burial of amino
acid residues on protein stability. Proteins, 54, 315–322.

i68


