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Supplementary Figure S1: Distribution of warfarin dose by VTE status.  In this dataset 
warfarin dosage is significantly associated with VTE status, as discussed in Daneshjou 
et al. 2016.  Patients with VTE are more likely to be on a higher dose of warfarin than 
those taking warfarin for a different indication.  The distribution of warfarin dosage for 
patients with VTE is shown in blue, and the distribution of warfarin dosage for patients 
taking warfarin for a different indication are shown in red. 
 
 
Participant summaries 
The remainder of the text in this document is from the participants describing their 
methodology for approaching the prediction challenge.  Each summary is followed by a 
figure showing different visualizations of the predictions submitted by the preceding 
group. 
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Evolutionary Action (EA) burden on known disease-associated genes 
In order to separate individuals with venous thromboembolism (VTE) from those with atrial 
fibrillation (AF), we predicted the fitness effect of the genetic variants in genes associated with 
VTE and with AF. 
We used the Evolutionary Action (EA) method to predict the fitness effect of the genetic variants 
(Katsonis and Lichtarge 2014). EA does not involve any training, because it relies on a formal 
equation of the genotype-phenotype relationship. The terms of this equation were m calculated 
using protein homology data. Briefly, the EA equation states that the fitness effect of a mutation 
equals the product of the sensitivity of the mutated position with the magnitude of the change. 
The sensitivity of the position is calculated by quantifying the correlation of the residue variations 
with phylogenetic branching within an alignment of homologous sequences (Lichtarge et al. 1996; 
Mihalek et al. 2004; Lichtarge and Wilkins 2010). The magnitude of the change is calculated from 
substitution likelihood according to numerous sequence alignments for the given context (strata 
of sensitivity of the position, and optionally additional stratification based on structural features). 
The calculated product is then normalized to represent the percentile rank of each variant within 
the protein in the scale of 0 (benign) to 100 (pathogenic). The EA scores are available for all 
human variants at: http://mammoth.bcm.tmc.edu/EvolutionaryAction 
We used the DisGeNET platform to identify genes associated with VTE and genes associated 
with AF (Pinero et al. 2017). For each disease, DisGeNET provides a list of genes scored with an 
index that represents the confidence of association. High scores correspond to more reliable 
associations, therefore, we only used scores of 0.1 or above to avoid false positives. For VTE we 
found 8 genes scored above 0.1 (F5, F2, FGA, PROC, PLAT, SERPINC1, TNF, and SERPIND1), 
while for AF we found 38 genes (SCN5A, KCNE2, HCN4, NKX2-5, ACE, GJA5, KCNQ1, NOS3, 
KCNA5, LMNA, NPPA, ZFHX3, KCNN3, VWF, NPPB, PRKAG2, NUP155, SELE, CAV1, 
SCN10A, MYH7, ANK2, SOX5, HTR4, SYNE2, PLN, C9orf3, PRRX1, CAV2, CACNA1C, 
WNT8A, EDN1, CACNB2, SMAD3, TNNI3K, TAB2, DTNA, DES).  
To calculate the likelihood of each individual to have VTE, we used the ratio of the fitness 
effect on VTE genes over the fitness effect of VTE and AF genes. For one individual, the fitness 
effect on one gene (EAgene) was defined to be equal to: 0 if there was no mutation, EA/100 if there 
was one mutation, or 1-∏(1-EAi/100) if there were multiple mutations (∏ indicates the product for 
all mutations i). For synonymous variants EA was 0 and for nonsense variants EA was 100. To 
account for the strength of the association of a gene to disease we calculated a weighting factor 
for each gene based on the DisGeNET score (SDisGeNET), as: wgene=wGI×(SDisGeNET-0.1), where wGI 
represents the ability of the genes to tolerate variations. For submission 1 we calculated wGI as a 
percentile rank of the genes based on the average EA score of the variants seen in gnomAD (Lek 
et al. 2016), while in submission 2 we used wGI=1 for all genes, since the DisGeNET scores may 
already account for this effect. Then, we calculated the fitness effect on VTE genes (EAVTE) and 
on AF genes (EAAF) as the sum of wgene× EAgene, respectively. To normalize the two fitness effect 
scores, we calculated the factor: r= average(EAAF)/average(EAVTE), based on the average values 
for all individuals (this normalization assumes that the number of VTE patients is about equal to 
the number of AF patients). The probability (p) of an individual to have VTE was finally calculated 
as: p=r×EAVTE/(r×EAVTE+EAAF).  
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Supplementary Figure S2:  Evaluation plots for the first submission from group 1.  The top left 
plot shows a histogram of the predicted scores ranging from 0 to 1, with a 1 indicating the 
highest probability of VTE.  Subjects with VTE are shown in blue, and those without are shown 
in gray.  The top right plot shows a receiver operator characteristic (ROC) curve with the area 
under the ROC curve (AUC) of the method indicated on the plot, the bottom left plot shows the 
predicted scores of each subject in order of subject id, the bottom right plot shows the predicted 
scores for each subject sorted by the predicted score in descending order.  On both the bottom 
plots the color and shape indicate correct and incorrect predictions, with correct predictions 
represented as black circles, and incorrect predictions as red X’s.  Supplementary figures 2-15 
all show the same plots with the values changing based on the submission.   
 
 



 
 

 
 
Supplementary Figure S3:  Evaluation plots for the second submission from group 1.  Refer 
to supplementary figure 2 for a description of the plots. 
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Variant annotation and scoring is done using Varant [1] program and an in-house variant 
prioritization program (unpublished) respectively. The variant prioritization tool integrates 
predictions from around twenty functional predictors. Each variant score varies from 0-1 (1 
being the highest likelihood of pathogenicity). We did not apply any filter based on genomic 
regions to select variants, thus our analysis included intergenic, intronic, exonic and canonical 
splice variants. Intergenic, intronic and UTR variants are scored based on CADD [2], DANN [3] 
and regulome annotation [4]. Coding exonic variants are scored based on CADD, DANN, 
Polyphen2 [5], SIFT [6], FATHMM [1], MutationAssessor [7], MutationTaster [8], Provean [9], 
LRT [10], and Meta_SVM [11]. Conservation annotations used to score the variants are as 
follows: GERP++ [12], PhastCons [13] and SiPhy [14]. We also used MAF filter to select 
population specific common variants in African Americans. Thus common variants (MAF > 
0.03) from African American population and all rare variants (MAF <=0.02) from all 
populations were selected for further analysis. Only variants with genotype quality greater than 
20 are taken up for the analysis. Further variants are filtered based on list of genes known to be 



involved in venous thrombosis. Genes are compiled from online Mendelian inheritance in Man 
(OMIM) [15], Human phenotype ontology (HPO) [16], genome wide association studies 
(GWAS) studies and review articles on clotting disorders. Natural inhibitors of clotting proteins 
i.e anticoagulant proteins are scored highest as normal functioning of these genes is necessary to 
prevent thromboembolism [17]. Proteins in the coagulation pathways associated with venous 
thrombosis and well established genes from literature [17] are given next best score of 0.67. 
These high scoring genes are also part of databases like OMIM, Clinvar [18] and HPO, and are 
annotated as, “deep venous thromboembolism”, “venous thrombosis” or “thrombophilia” 
causing genes. Besides the well-established genes in venous thrombosis, other genes associated 
with venous thrombosis from HPO database or literature are given a score of 0.33. The genes 
associated with venous thrombosis from GWAS studies and associated with thrombosis risk as 
given in Genetics Home Reference[15] are given a score of 0.17. A variant score cutoff of 0.4 is 
used to select likely pathogenic variants in the genes associated with thrombosis (Table 1). For 
each variant, the variant score is multiplied by the gene relevance score to get a final variant 
score. For each sample, total sample score is calculated as sum of all the variant scores. The 
sample score is normalized by dividing it with the total number of variants in the sample. 
There are certain gene combinations that increase the risk of venous thrombosis manifold [19]. 
We observed that F2 and F5 gene combination occurred very frequently in samples hence an 
additional gene combination score of 0.25 is added to such samples. It is presumed that F2 and 
F5 gene combination could potentially increase the likelihood of venous thrombosis in such 
samples. The variant scores range from 0-0.611. Samples with score greater than 0.200 are more 
likely to be venous thrombosis patients. This cutoff was based on number of high scoring genes 
in the sample. Samples with sample score less than 0.2 had genes with weak association (low 
gene scores) with venous thrombosis. 
 
 
 
 
 
 
Table 1: Genes scored based on their relevance to venous thrombosis. 

Gene Database (Disease) Gene score 
PROC OMIM (Thrombophilia), HPO (Deep 

Venous Thrombosis) 
1 

PROS1 OMIM (Thrombophilia), HPO (Deep 
Venous Thrombosis ) 

1 

SERPINA10 OMIM (Venous Thrombosis) 1 
SERPINC1 OMIM, HPO (Deep Venous Thrombosis) 1 
SERPIND1 OMIM (Thrombophilia) 1 
THBD OMIM, HPO (Deep Venous Thrombosis) 1 
ABO PubMed [17, 20] (Well established venous 

thrombosis associated gene) 
0.67 

AKT1 OMIM, HPO (Deep Venous Thrombosis) 0.67 
F13A1 OMIM (protection Venous Thrombosis) 0.67 
F13B Clinvar (Deep Venous Thrombosis) 0.67 
F2 OMIM (Thrombophilia), HPO (Deep 

Venous Thrombosis) 
0.67 

F5 OMIM, HPO (Deep Venous Thrombosis ) 0.67 
F7 OMIM VT: Genes of Coagulation pathways" 0.67 
F8 OMIM VT Genes of Coagulation pathways" 0.67 
F9 OMIM, HPO (Deep Venous Thrombosis ) 0.67 
FCH2 OMIM (thrombophilia) 0.67 
FGA HPO (Venous Thrombosis) 0.67 



Gene Database (Disease) Gene score 
FGG HPO (Venous Thrombosis) 0.67 
GP1BA OMIM (Thrombosis) 0.67 
HABP2 OMIM (VT susceptibility) 0.67 
HRG OMIM (Thrombophilia), HPO (Abnormal 

Thrombosis) 
0.67 

MTHFR OMIM (Thromboembolism) 0.67 
PIEZO1 (Calcium signaling) 0.67 
PLAT OMIM (Thrombophilia ) 0.67 
ACVRL1 HPO (Venous thrombosis) 0.33 
ADAMTS13 PubMed [21]  0.33 
AGGF1 HPO (Venous thrombosis) 0.33 
C4A HPO (Venous thrombosis) 0.33 
CALR HPO (Venous thrombosis) 0.33 
CBS HPO (Venous thrombosis), metabolic 

protein with coagulation phenotypes" 
0.33 

CCR1 HPO (Venous thrombosis) 0.33 
CPB2 PubMed [22] 0.33 
CTLA4 HPO (Venous thrombosis) 0.33 
ENG HPO (Venous thrombosis) 0.33 
EPOR HPO (Venous thrombosis) 0.33 
ERAP1 HPO (Venous thrombosis) 0.33 
F12 GWAS, coagulation pathway 0.33 
FAS HPO (Venous thrombosis) 0.33 
GDF2 HPO (Venous thrombosis) 0.33 
GNAQ HPO (Venous thrombosis) 0.33 
HBB HPO (Venous thrombosis) 0.33 
HLA-B HPO (Venous thrombosis) 0.33 
HLA-DPB1 HPO (Venous thrombosis) 0.33 
IDH1 HPO (Venous thrombosis) 0.33 
IDH2 HPO (Venous thrombosis) 0.33 
IL10 HPO (Venous thrombosis) 0.33 
IL12A HPO (Venous thrombosis) 0.33 
IL12A-AS1 HPO (Venous thrombosis) 0.33 
IL23R HPO (Venous thrombosis) 0.33 
ITGB3 PUBMED [23] 0.33 
JAK2 HPO (Venous thrombosis) 0.33 
KLRC4 HPO (Venous thrombosis) 0.33 
KNG1 GWAS and fibrinolysis and kallikrein 

pathways 
0.33 

MEFV HPO (Venous thrombosis) 0.33 
MPL HPO (Venous thrombosis) 0.33 
PDGFRA HPO (Venous thrombosis) 0.33 
PROCR PubMed [24] 0.33 
PROZ PubMed [25]  0.33 
PRTN3 HPO (Venous thrombosis) 0.33 
PTH1R HPO (Venous thrombosis) 0.33 
PTPN22 HPO (Venous thrombosis) 0.33 
SERPINA1 PubMed [26] 0.33 
SERPINA5 PubMed [26] 0.33 
SERPINE1 PubMed [26] 0.33 
SERPINF2 PubMed [26] 0.33 
SERPING1 PubMed [26] 0.33 
SH2B3 HPO (Venous thrombosis) 0.33 
SMAD4 HPO (Venous thrombosis) 0.33 
SPINT2 UniProt (inhibits tissue kallikrein, and factor 

F11) 
0.33 

STAT4 HPO (Venous thrombosis) 0.33 
THBS1 PubMed [27] 0.33 
TLR4 HPO (Venous thrombosis) 0.33 
TP53 HPO (Venous thrombosis) 0.33 
UBAC2 HPO (Venous thrombosis) 0.33 
USP8 HPO (Venous thrombosis) 0.33 
VTN PubMed [26] 0.33 
BMPR2 Abnormal thrombosis 0.17 
C4BPA GWAS 0.17 



Gene Database (Disease) Gene score 
C4BPB GWAS 0.17 
CD59 Genetics Home Reference (increased risk 

thrombosis) 
0.17 

CYP4V2 GWAS 0.17 
F11 GWAS 0.17 
FGB Genetics Home Reference (increased risk) 0.17 
GP6 GWAS 0.17 
HIVEP1 GWAS 0.17 
KLKB1 Genetics Home Reference (increased risk) 0.17 
LEMD3 GWAS 0.17 
LY86 GWAS 0.17 
MYH9 Abnormal thrombosis 0.17 
PIGA Genetics Home Reference (increased risk) 0.17 
PIK3CA Genetics Home Reference (increased risk) 0.17 
PLA2G7 metabolic protein with coagulation 

phenotype (platelet activation) 
0.17 

PRSS1 HPO (Abnormal thrombosis) 0.17 
RFT1 HPO (Abnormal thrombosis) 0.17 
SLC2A10 HPO (Abnormal thrombosis) 0.17 
SPINK1 HPO (Abnormal thrombosis) 0.17 
STX2 GWAS  0.17 
STXBP5 GWAS " 0.17 
TC2N GWAS 0.17 
TET2 Genetics Home Reference (increased risk) 0.17 
THPO Genetic Home Reference (increased risk 

thrombosis) 
0.17 

VWF GWAS 0.17 
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Supplementary Figure S4: Evaluation plots for the submission from group 2.  Refer to 
supplementary figure 2 for a description of the plots. 
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The submitted predictions are derived from a combination of variant pathogenicity scores in 
relevant genes and the relationship of each clinical covariate to the phenotype. Annotation of 
the protein coding variation in the raw VCF files was performed using ANNOVAR. We assign 
pathogenicity prediction scores to missense and stop gain variants with MutPred2 and MutPred-
LOF, respectively. Per exome, we include only the variant with the highest pathogenicity 
prediction score within each gene in further analyses. Confirmed risk genes are used as “seed” 
genes on the human protein-protein interaction network for running a network propagation 
algorithm. The propagation algorithm are performed in a 5-fold cross validation manner to get 
an initial score between [0, 1] for all the genes. We then use the AlphaMax algorithm to estimate 
the positive proportion of the risk genes and calibrate those initial scores to be proper probability 
scores measuring the likelihood of a gene being associated with the disease.  
 



We generate a beta distribution based upon the MutPred scores of variants within the top one 
hundred highest scored genes for each phenotype. For each exome, we utilize the distribution 
to determine the p-value for the highest MutPred-scored variant within each gene. Next, we 
sought to incorporate the clinical covariates within a similar framework. For each clinical 
covariate, we search the published literature to find the mean and standard deviation values of 
the trait described in case/control studies. We utilize these variables from the literature to derive 
value distributions (binomial for gender and aspirin, Gaussian otherwise) that were used to 
derive p-values for each individual based upon their particular value for that covariate. The 
unnormalized score is the product of all gene and covariate scores, where each individual has 
scores for both VTE and atrial fibrillation. We then combine the VTE and atrial fibrillation score 
rankings using geometric mean, then transform with min-max normalization so that the values 
range between zero and one. The procedure is repeated one hundred times with differing 
amounts of seed genes (from 200 to 300), where the score for an individual is the mean score 
of the one hundred iterations. 
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Supplementary Figure S5:  Evaluation plots for the submission from group 3.  Refer to 
supplementary figure 2 for a description of the plots. 
 



 
 
 
Group 4 
BioFolD predictions of Clotting Disease from exome data. 
 
Emidio Capriotti 
BioFolD Unit, Department of Pharmacy and Biotecnology (FaBiT), University of Bologna, Via 
Selmi 3, 40126 Bologna, Italy. 
 
Our main hypothesis behind the predictions for the Clotting Disease challenge is that patients with 
higher Warfarin dose have higher incidence of venous thromboembolisms (VTE). Thus, we 
developed a linear regression approach that predicts the Warfarin dose taking as input the gene 
damaging (GD) scores and the clinical covariates collected by the data providers. In particular the 
input variables consist of the GD scores associated to 12 genes potentially involved in the disease 
(Coagulation factors 1 to 10, Vitamin K-dependent proteins C and S) and 6 clinical covariates 
data (gender, age, height, weight, aspirin and amiodarone). 
The GD score is calculated summing the probabilistic output of the PhD-SNPg algorithm (Capriotti 
and Fariselli 2017, PMID: 28482034) for each variant falling in the selected gene of an individual. 
PhD-SNPg is a machine learning method that predicts deleterious variants using conservation 
scores made available by the UCSC genome browser. For the input the gender is represented by 
a binary variable. 
The output of the linear regression method is rescaled between 0 and 1. 
After the comparison with the clinical data and using a threshold of 0.5, our approach resulted in 
an overall accuracy of 0.70 a Matthews correlation coefficient of 0.40 and an AUC of 0.76. In 
terms of AUC, this result is comparable with that achieved by a naïve method based on the 
prescribed Warfarin dose rescaled by a factor of 0.01. The naïve approach reaches overall 
accuracy 0.73, Matthews correlation coefficient   0.44 and AUC 0.74. The score of the 
performance of both methods are reported in the following table. 
 
 

Method Accuracy TNR NPV TPR PPV MCC F1 AUC 
Naïve 0.73 0.73 0.60 0.73 0.83 0.44 0.77 0.74 
Linear  0.70 0.73 0.56 0.68 0.82 0.40 0.74 0.76 
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Supplementary Figure S6: Evaluation plots for the submission from group 4.  Refer to 
supplementary figure 2 for a description of the plots. 
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Yanran Wang1, Yana Bromberg1 

 

1Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 
 
The Bromberglab submitted four predictions CAGI 2018 Clotting disease African American (AA) 

exomes challenge. These are summarized below and detailed in our special issue manuscript1. 

1. Our best result (ranked first of all submissions that used solely the genomic info) used the 

SNAP2 predicted functional impact of variants within the known VTE genes extracted from 

DisGeNET database3. Each person/exome was represented as a vector of SNAP scores of 

the variants that were predicted to be non-neutral. We then clustered these vectors using K-

means4 into two groups.  

2. We further aggregated the variant-level function changes to represent gene-level functionality. 

The resulting gene function vectors of each person/exome were K-means clustered into two 

groups for our second-best result (ranked third of all the methods that used solely the genomic 

info).  



3. Unlike the first two methods that used function change as a feature, our other method which 

used the genotypes of variants within VTE genes directly. This approach had a nearly random 

performance. Note that K-modes5 clustering was used here as genotypes are categorical (not 

continuous) features.  

4. We also applied genetic risk scoring (GRS) using variants identified by the VTE genome-wide 

association study (GWAS) in AA population. All risk variants were extracted from Heit et al.6 

and VTE risk was calculated as the sum of all risk allele counts with log odds ratio weights. 

The GRS method (ranked fourth overall) performed worse than the two clustering methods: it 

had high precision (90%) at the cost of a low recall (26%). This result suggests that the GWAS 

VTE signal is not sufficient to explain a large portion of the disease pathogenesis.  

Our results, thus, suggest that variant functional impacts are critical to understanding VTE 

pathogenicity and for improving predictor performance.  
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Supplementary Figure S7: Evaluation plots for the first submission from group 5 (Group 5a 
in Table 1, method 4 above).  Refer to supplementary figure 2 for a description of the plots. 
 

 
 



Supplementary Figure S8: Evaluation plots for the second submission from group 5 (Group 
5b in Table 1, method 3 above).  Refer to supplementary figure 2 for a description of the plots. 
 

 
 
Supplementary Figure S9: Evaluation plots for the third submission from group 5 (Group 5c 
in Table 1, method 1 above).  Refer to supplementary figure 2 for a description of the plots. 
 



 
Supplementary Figure S10: Evaluation plots for the fourth submission from group 5 (Group 
5d in Table 1, method 2 above).  Refer to supplementary figure 2 for a description of the plots. 
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Methods 

The Bologna Biocomputing group (group 6) provided 4 different submissions. The first one 
(submission 6a) only analyses the provided metadata as grouped following aspirin and non-
aspirin prescription. The other three submissions (6b, 6c, 6d) consider exome data and analyze 
the individual variations in a panel of 49 candidate genes derived from GWAS experiments and 
described in literature as being associated with venous thromboembolism (VTE), with 
differentiation of arterial and venous endothelia and with warfarin pharmacogenomics.  

For calibrating our predictions, we took into consideration the statistics on the dataset reported 
in Table 1 of the paper describing the sampled population (Daneshjou et al., 2014). In particular, 
it reports that, out of 103 patients, 58 and 45 assume high and low doses of warfarin, 
respectively. Moreover, the VTE patients account for the 82.75% of patients assuming high dose 
of warfarin (48 individuals) and the 40.91% of patients assuming a low dose of warfarin (18 



individuals). We then expect that the dataset includes 66 VTE affected patients. The remaining 
37 patients are atrial fibrillation (AF) affected, as reported (Daneshjou et al., 2014). 

Submission 6a  

The provided metadata indicate that 35 individuals assume aspirin and 68 do not. These 
numbers are close to the expected numbers of AF (37) and VTE (66) patients. Moreover, 
warfarin-aspirin combination is often prescribed to AF patients (Turan et al., 2016). Considering 
this knowledge, we classified all the patients assuming aspirin to be AF affected.  

Submissions 6b, 6c, 6d  

The discrimination between VTE and AF cases exploits the analysis of variations in genes 
involved in blood coagulation or related to the arterial and venous endothelia.  

To collect a set of possibly relevant genes, we retrieved: i) 15 genes involved in VTE from the 
GWAS Catalog (https://www.ebi.ac.uk/gwas/); ii) 11 genes influencing the anticoagulant warfarin 
activity from Daneshjou et al. (2014); iii) 23 genes reviewed in Dela Paz and D'Amore (2009), 
associated with the differentiation of venous and arterial endothelia and possibly related to VTE 
and AF, respectively.  

The list of 49 candidate genes is available in the Appendix. 

We started from the provided VCF files, filtering out 430,766 variations with a minor allele 
frequency (MAF) < 0.05 or with missing genotypes in at least one individual. Restricting the 
analysis to the 49 candidate genes, we found a total of 485 SNPs present in at least one of the 
103 exomes, in either homo- or heterozygous form.   

We then built a binary matrix reporting the presence of each SNP in each exome (485 SNPs x 
103 exomes). We adopted Principal Component Analysis (PCA) to represent data in a low-
dimensional space and to highlight possible splits in agreement with the expected number of 
VTE and AF cases (66 and 37, respectively). We considered different combinations of principal 
components (PC). In the PC1- PC3 plane, the 103 exomes well separate into two groups of 63 
and 40 individuals (submission 6b). When considering the PC2 -PC3 plane we obtained groups 
of 59 and 44 exomes (submission 6c), while in the PC4-PC5 plane clusters 64 and 39 
individuals (submission 6d). To better highlight the groups we performed, for each PC 
combination, a clustering analysis with the K-means algorithm (with K=2). 

 

Appendix 

Genes involved in VTE – ABO, COX7A2L, KCNG3, EPHA3, F11, F2, F5, F8, FGG, KNG1, 
PROCR, SLC44A2, TMEM170B, ADTRP, TSPAN15 

Genes associated with warfarin dosage – ZFHX3, CYP2C9, VKORC1, FPGS, CD177, ZNF229, 
LBR, ALKBH5, LOC441601, HIVEP3, SEMA3G 

Genes involved in the development of arterial and venous endothelia – EFNB2, NRP1, GJA5, 
BMX, NOTCH1, NOTCH4, DLL4, JAG1, JAG2, HEY2, KDR, TBX20, ACVRL1, EPAS1, DEPP1, 
VEGFA, EPHB4, LEFTY1, LEFTY2, FLT4, NRP2, TEK, NR2F2, EMC 
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Supplementary Figure S11: Evaluation plots for the first submission from group 6.  Refer to 
supplementary figure 2 for a description of the plots. 
 



 
 
Supplementary Figure S12: Evaluation plots for the second submission from group 6.  
Refer to supplementary figure 2 for a description of the plots. 
 
 

 



Supplementary Figure S13: Evaluation plots for the third submission from group 6.  Refer to 
supplementary figure 2 for a description of the plots. 
 
 

 
Supplementary Figure S14: Evaluation plots for the fourth submission from group 6.  Refer 
to supplementary figure 2 for a description of the plots. 
 
 
Group 7 
Group 7 did not submit a summary for the manuscript.  In their submission they reported that 
they used a convolutional autoencoder to generate a latent representation of each sample then 
cluster the samples using agglomerative clustering. 



 
Supplementary Figure S15: Evaluation plots for the submission from group 7.  Refer to 
supplementary figure 2 for a description of the plots. 
 
 
Baseline 
Additional figures are included here for the baseline method described in the main text 
developed by Soria et al. 
 



 
 

 


