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ABSTRACT Detection of homologous proteins
with low-sequence identity to a given target (remote
homologues) is routinely performed with alignment
algorithms that take advantage of sequence profile.
In this article, we investigate the efficacy of differ-
ent alignment procedures for the task at hand on a
set of 185 protein pairs with similar structures but
low-sequence similarity. Criteria based on the SCOP
label detection and MaxSub scores are adopted to
score the results. We investigate the efficacy of
alignments based on sequence–sequence, sequence–
profile, and profile–profile information. We confirm
that with profile–profile alignments the results are
better than with other procedures. In addition, we
report, and this is novel, that the selection of the
results of the profile–profile alignments can be im-
proved by using Shannon entropy, indicating that
this parameter is important to recognize good pro-
file–profile alignments among a plethora of meaning-
less pairs. By this, we enhance the global search
accuracy without losing sensitivity and filter out
most of the erroneous alignments. We also show that
when the entropy filtering is adopted, the quality of
the resulting alignments is comparable to that com-
puted for the target and template structures with
CE, a structural alignment program. Proteins 2004;
54:351–360. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

The ever-increasing size of databases of protein se-
quences has promoted the development of new approaches
in the field of fold recognition. It is generally accepted that
in proteins with high-sequence identity (�25%), struc-
tures are similar.1–3 Many examples in the literature
describe the success of this approach.4–7 However, the
problem gets increasingly difficult when homology be-
tween target and template sequences becomes low and
sequence identity is �25%; under these conditions, align-
ments become unreliable.8,9 Therefore, the search into the
so-called “twilight zone” of sequence similarity (�25%)
requires the development of methods suited to find new
protein structures (remote homologues1).

In the last few years, new algorithms incorporated
evolutionary information through multiple-sequence align-
ments. Methods, such as PSI-BLAST,4 3D-PSSM,5 Gen-
THREADER,6 and BASIC7 have improved the search for
remote homologous sequences.

Generally speaking, starting from the sequence, the
search can be performed by comparing two sequences
(sequence–sequence), a sequence to a profile (sequence–
profile), and two profiles (profile–profile). It has been
reported that methods based on profile–profile alignments
are in general more sensitive than those based on sequence–
profile, such as PSI-BLAST.10

In this work, we describe a method similar to a previ-
ously developed procedure (BASIC)7 for the profile–profile
comparison, and we apply it to the fold recognition prob-
lem. Then, we contrast our results with those obtained
with sequence–sequence, sequence–profile, and structural
alignments. We prove that a filter based on Shannon
entropy11 is capable of selecting good alignments among
meaningless ones generated with profile–profile compari-
sons and to enhance the global accuracy of fold recognition.
Moreover, when the Shannon entropy filter operates, the
resulting alignments are comparable to those obtained
with the CE12 structural alignment program that operates
starting from the target and template structures.

MATERIALS AND METHODS
Data Set

Protein structures are clustered into families based on
hierarchy of functional and structural similarities. Data-
bases, such as SCOP13 and CATH14,15 (http://www.
biochem.ucl.ac.uk/bsm/cath_new), are built by human ex-
pertise and agreed-upon criteria to cluster proteins of
similar structure and function. Because we are interested
in fold recognition of proteins with low-sequence similar-
ity, we select a representative set containing typical folds.
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The procedure is as follows. First, we use the representa-
tive list of protein families downloaded from http://
www.ebi.ac.uk/dali/fssp/TABLE1.html. This list contains
chains with sequence identity � 25% and known struc-
tures in the PDB. Second, we discharge the chains whose
entries in the corresponding PDB files (http://www.rcsb.org/
pdb) are not completed (we require continuity in the
structures). Third, we keep only those chains that had a
corresponding SCOP code. Finally, we chose a protein pair
in the previous list for each different SCOP label (4 digits)
(http://scop.mrc-lmb.cam.ac.uk/scop/). Our final list con-
sists of 185 protein pairs with sequence identity � 25%
and known structure, with SCOP labels, and is available
at (http://www.biocomp.unibo.it/emidio/thlist.html). This
set is then used to score our approach.

Evaluation of Fold Recognition

For proteins of known structures, we can evaluate the
sequence alignments obtained by a threading method.
Indeed, we can measure how well the putative protein
structure fits into its high-resolution three-dimensional
structure. This task can be addressed by using several
methods, such as comparing the identical pairs in se-
quence and structure alignments,8 measuring the contact
map overlap after optimal superposition,16,17 or calculat-
ing the structural similarity between targets and tem-
plates.18–20

In this article, we measure the overlapping of the
putative structure evaluated after finding of the template
with the known sequence structure in the SCOP database.

Fig. 1. Flow chart of the method. Here we describe all steps by using the SWA-PP method. In the first step,
we build target and template profiles by PSI-Blast. In the second phase, we align the profiles by using
BLOSUM62 mutation matrix and Smith and Watermann algorithm. We repeat this operation for all templates in
our database. In the final step, we assess our results by the Shannon entropy criterion.
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This is performed simply by computing the match of the
SCOP indexes both at the family (4 digits) and superfamily
(3 digits) level and introducing two indexes that evaluate
the percentage match at the family (FC) and superfamily
(SFC) level, respectively.

A second measure of the efficiency of our procedure is
computed with the MaxSub algorithm.21 The difficulty in
assessing models is that simple measures, such as root-
mean-square deviation (RMSD),20 computed over all the
atoms is a very poor indicator of the quality of a model,
especially when only part of the model is well assigned. In
this case, the wrongly predicted regions spoil the RMSD
computation. Thus, a way to identify and score only the
well-predicted regions is needed. We evaluate our results
by using the MaxSub algorithm, which has also been used
in CAFASP3 experiments for the same purpose. MaxSub
aims to identify the largest subset of C� atoms of a model
that superimpose well over the experimental structure
and ranges from 0 to 10.

We also computed an upper bound to the alignment
accuracy using a structural alignment algorithm. There
are many methods to evaluate similarity of protein struc-
tures, such as CE,12, DALI22,23 (http://www.ebi.ac.uk/
dali/), and VAST24 (http://www.ncbi.nlm.nih.gov/Structure/
VAST/vast.shtml).

We used the CE method as available on the web
(http://cl.sdsc.edu/ce.html) with the default parameters.

The Algorithm

Our algorithm is based on a local dynamic program-
ming,25 with BLOSUM62 as scoring matrix.26 In the
dynamic programming calculation, we optimize the gap
penalties values, implemented as the usual linear gap
(g(x) � kx � q). We implemented several alignment
procedures, all based on the local Smith–Waterman algo-
rithm (SWA).25 Different scoring functions are computed,
considering, respectively, information derived by sequence–
sequence (SS), sequence–profile (SP), profile–sequence (PS),
or profile–profile (PP) alignments. Results are also com-
pared with those of the PDB-BLAST10 protocol.

To obtain sequence profiles, we use three iterations of
PSI-BLAST with an E-value inclusion threshold of 10�3.
Our PSI-BLAST runs were performed against a nonredun-
dant database27 consisting of 705,002 protein sequences.

The alignment score from the position i of target se-
quence profile PA(i) and the position j of template sequence
profile PB(j) is indicated as DAB(i,j) and is calculated as

DA,B(i, j) � PA(i)TMPB(j) (1)

where M is the 20 � 20 BLOSUM62 substitution matrix.
The formalism introduced with Eq. 1 applies smoothly to

both profiles and sequence scores, because the sequences
can be converted into profiles that have only 0 or 1
element.

When necessary, the values for the gapping parameters
used in SWA-PP are k � 1 and q � 3, obtained after a
search in the parameter space, to optimize the results. The
value of gapping parameters reported in the literature for
sequence–profile alignments, as in PSI-Blast, are k � 1
and q � 10 and for the sequence–sequence ones, as in
LALIGN,28 are k � 4 and q � 10.

The flowchart of our profile–profile-based method is
shown in Figure 1.

Fig. 2. Example of a good SWA-PP alignment. Here we show the
alignment between 1GAKA model (gray) and 1 GAKA protein (black). The
model is obtained by using 1LIS_ template. The two proteins have
a.19.1.1 SCOP code. The comparison between the two structures with
MaxSub program give 4.94 points. The identity in the sequence alignment
is 19%. The 1GAKA and 1LIS_ protein pair is detected by using the
SWA-PP method, which gives a score of 39.7. Other methods, such as
SWA-SS, SWA-PS, and SWA-SP, are not able to recognize the correct
template.

TABLE I. Assessment of the Different Alignment
Procedures on the 185 Protein Pairs of the Data Set

Methodsa % CF° % CSFb �MaxSub�b

SWA-SS 52.4 54.1 1.7 � 0.2
SWA-SP 62.7 63.8 2.7 � 0.2
SWA-PS 64.3 68.1 2.6 � 0.2
Max (PS,SP) 64.9 67.0 2.8 � 0.2
SWA-PP 67.6 70.8 3.1 � 0.2
SWA-PP�SFb 97.5 99.2 4.6 � 0.2

aSW, Smith–Waterman algorithm; SWA-SS, SW with sequence–
sequence score; SWA-SP, SW with sequence–profile score; SWA-PS,
SW with profile–sequence score; Max(PS,SP), maximum between
SWA-PS and SWA-SP; SWA-PP, SW with profile–profile score.
bIndexes: CF is the number of correct fold predictions at family level;
CSF is the number of correct superfamily predictions. MaxSub score is
the average value over 185 pair proteins data set.
cShannon entropy filter reduces the number of protein pairs to 119,
because the alignments in which at least one profile is endowed with
an entropy value of �0.5 are rejected.
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Statistical Indices

Among the standard statistical indices to evaluate an
alignment accuracy, we select the following two. The first
one is the z score, which is computed as

Z score �
D � 	D


�D
(2)

where D is the score obtained from the alignment of two
proteins, �D� is the mean scoring point over all possible
alignment in our data set, and �D is the standard devia-
tion.

The second is the Shannon entropy information,11 which
for each position i in the sequence profile it is defined as

Si � � �
a � 1

20

pi�alog�pi�a (3)

where the sum runs over the 20 amino acids and pi(a) is
the frequency that the residue a in the i-th position.

Entropy-Based Filter

The filter procedure is applied to score profile versus
profile. The method is essentially based on the computation
of the average entropy value for each alignment as described
by Eq. 3. When this value is below a given threshold
(routinely 0.5), the alignment is rejected. Conversely, align-
ments of both the target and template with the highest
entropy values are retained (see Fig. 3 and text below, for
explanations). The rationale for this procedure is based on
the observation that when the entropy of either one or both
the profiles is low (less than the 0.5 threshold), high scoring
alignments, with an unrealistically large number of gaps are
routinely generated. This is possibly due to the fact that
gapping parameters used in SWA-PP become inadequate;
particularly, the gap opening cost q becomes too low.

RESULTS AND DISCUSSION
Assessment of the Different Alignment Procedures

Starting from the protein sequence, we can search the
database of sequences corresponding to known structures

Fig. 3. Shannon entropy information and fold prediction. Template versus target average Shannon entropy.
Filled circles represent the correct SCOP fold labels, whereas white triangles are erroneous assignments.
However, two of the three wrong assingments whose entropy is higher than 0.5 for both target and template are
correct at the SCOP superfamily level.
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in different ways. Because we know the solution of our
problem (the structure of the target), after searching, we
compare the real protein structure with the computed one
and evaluate the efficacy of different alignment proce-
dures.

In this section, we compare the results obtained with
different types of alignments. Basically, we can adopt at
least five different procedures and score them as described
by Eq. 1. The scoring functions are evaluated by using the
BLOSUM62 matrix and five different alignment proce-
dures: sequence versus sequence (SS), target sequence
versus template profile (SP), target profile versus template
sequence (PS), the maximum scoring alignment between
each corresponding PS and SP, and profile versus profile
(PP) (Eq. 1). By this, we can then compare the efficacy of
the five different approaches to trace the most reliable
template. This is done on the basis of the alignment scores
and the number of correct fold predictions evaluated as
described above.

It is worth mentioning that we consider only the first
best scoring template of each run (no second best is used).
This is a somewhat stringent condition, but we believe that

it is needed to better highlight the differences in the
performance of the different procedures.

Table I reports the results obtained by using our data set
of 185 protein pairs. It is evident that when we score fold
detection, the profile–profile-based method (SWA-PP of
Table I) is the best performing, both at the family (%CF)
and superfamily levels (%CSF). Indeed, SWA-PP score
some 18% higher than the sequence–sequence-based
method (SWA-SS).

A more stringent test, based on the alignment of the target
with the template, once the procedure has focused it, is given
by the MaxSub value. In this case, the results also clearly
indicate that increasing the complexity of the alignment
methods promotes a better template identification. Evi-
dently, the results confirm the notion that evolutionary
information improves fold assignment and are in agreement
with a previous analysis reported by Rychlewski et al.31 in
which a similar algorithm (FFAS-R) was described.

However, when we apply the entropy-based filter, the
SWA-PP score further increases, clearly showing that in
this case we can focus more effectively on the significant
alignments and templates. The efficacy is about 99% and

Fig. 4. Alignment entropy in terms of Shannon entropy information. Template versus target average
Shannon entropy. Filled circles and white triangles represent alignments on which MaxSub score is positive or
0, respectively.
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98% at the superfamily and family level, respectively
(some 30% more than without filter). Concomitantly, also
the MaxSub value increases by about 1.5 folds.

For sake of clarity, we show in Figure 2 the structural
alignment of two proteins detected by the SWA-PP ap-
proach. It is worth noting is that this fold would have not

Fig. 5. Effect of entropy filtering on SWA-PP accuracy. The plot shows the probability of getting a positive
MaxSub score as a function of the alignment raw score. The dotted line is obtained over the unfiltered data, the
continuous line on the filtered ensemble. For filtered data, the frequency of a 0 MaxSub score is close to 1%,
when the score is around 36 (z score � 2).

Fig. 6. Comparison between SWA-PP method and CE results. Here we compare the quality of the
entropy-filled SWA-PP alignments (pointed area) with those obtained by the structural alignment program CE
(bold line). We plotted in point j the number of MaxSub point between j-l and j divided by the total sample of
data. In this way, the mean value of MaxSub points obtained by our method is 4.59 and by CE if 5.75.
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been detected by using the SWA-SS or SWA-PS methods
(protein PDB codes: 1GAKA, 1LIS_). The model obtained
with SWA-PP is superimposed to the real protein struc-
ture by the MaxSub program, and the final superposition
is shown in Figure 2 using Rasmol (http://www.umass.edu/
microbio/rasmol/).

Shannon Entropy Information and Alignment
Accuracy

The major contribution of this article is the introduction
of an index related to the accuracy of the profile–profile
alignments. By analyzing the wrongly assigned high scor-
ing pairs, we noticed that routinely either sequences of
very high homology or very few sequences were included in
the alignment used to build the corresponding profiles. In
this case, there is very little difference between the profile
and the sequence alone, so there is not much evolutionary
information included in the profile.

In this article, we propose that the Shannon entropy is a
parameter suited to separate accurate profile–profile align-
ments from bad ones. To support our claim, in Figure 3 we
plot each pair assigned by SWA-PP as a function of the
target and template average entropies calculated on the
aligned profile segments (filled circles represent the cor-
rect SCOP fold labels and white triangles are erroneous
assignments). It is evident that for �S� � 0.5 for both
target and template, �97% (116 of 119) of SWA-PP
predictions are in agreement with the SCOP folds. Notice-
ably, two of the three wrong assignments, whose entropy is
higher than 0.5 for both target and template, are at least

correct at the SCOP superfamily level, reaching in this
case a score of 99% (118 of 119).

To further support this finding, a more stringent test is
conducted to evaluate the MaxSub score (Fig. 4). In this
case, only the alignment pairs to whom MaxSub assigns
points are considered “corrects.” In Figure 4, the correct
aligned pairs are represented, as before, with filled circles,
and the wrong ones are depicted with white triangles. The
scores are depicted as a function of the average entropy. It
can be noticed that again for �S� � 0.5, about 92% (109 of
119) of the alignments has a MaxSub score greater than 0.

The relevance of the entropy criterion is also highlighted
in Figure 5. In this case, for each score, the probability that
a given alignment receives 0 MaxSub points is plotted as a
function of the alignment score. The alignment score is
computed from the distribution of the all possible align-
ment scores using the whole data set (34,225 alignments)
with a mean and a standard deviation of 12.5 and 12.1,
respectively. Both the whole data set pairs (dotted line)
and the filtered (solid line) ones are shown in the plot. In
this second case, only those pairs whose �S� � 0.5 for the
template and target profiles are taken into consideration
(16,795 alignments).

By considering the unfiltered data, it is evident that
there is still a significant chance of having an incorrect
alignment even when the score of a given pair is �100.
Conversely, the chance of a wrong pair alignment with a
score � 40 is negligible for the set after filtering. In other
words, we can say that if we are using the entropy filter, a
pair of target-template profiles with a z score � 2 (align-
ment score � 36.7 and Eq. 2) corresponds very likely
(about 99%) to a good candidate for the target query.

Therefore, we can conclude that entropy filtering elimi-
nates bad alignments with a high score. This kind of
alignment is obtained when a protein target or a template
has no sequence similarity to any protein in the nonredun-
dant database. In this case, it is impossible to exploit
evolutionary information.

Fig. 7. Sometimes SWA-PP is better than CE. A rare example where the SWA-PP alignment is better than
the CE one. The two protens are 1A0AA and 1AM9A, and their SCOP code is a.38.1.1. The SWA-PP alignment
has 28% sequence identity. On the left, we show the SWA-PP alingment (6.05 MaxSub), whereas on the right,
the CE structural alignment (4.05 MaxSub) is shown. SWA-PP better aligns the loop zone.

TABLE II. Comparison of the Results Obtained With SWA-
PP, PDB-BLAST, and CE on 119 Protein Pairs Data Set

Methods % NPa �MaxSub�

PDB-BLAST 58.9 2.8 � 0.2
SWA-PP�SF 91.7 4.6 � 0.2
CE 92.4 5.0 � 0.2

aNP is the number of predictions that have average MaxSub score � 0.
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Two fold recognition methods that make use of informa-
tion theory-based scoring functions have recently been
published.29,30 In these articles, different information
theory descriptors are involved in the definition of the
scoring funtions. Alternatively, with our approach, Shan-
non entropy is used to filter the result of a traditional
scoring (Eq. 1).

Comparison With CE and PDB-BLAST

To show the increased capability of our procedure, the
results obtained with the filtered SWA-PP method are
compared with those obtained by applying a structural
alignment program (CE). In this case, the target and the
template are aligned according to CE, and the alignment is
afterwards scored with MaxSub. Results are shown in
Figure 6. It is interesting that a shift toward higher
MaxSub points is noticed in CE. This is expected because
CE performs the structural alignment of a known three-
dimensional (3D) target to a known 3D template, namely
the correct SCOP pairs. This is based on the assumption
that the correct pairs are known and that the remote
homology search (the location of the correct templates) is
perfectly accomplished (100% accurate).

These results can be regarded as an upper limit with
respect to MaxSub values obtained after applying filtered
SWA-PP. However, the two distributions have a large
overlap, with average values of the MaxSub values of the
filtered SWA-PP and CE distributions of 4.6 and 5.7,
respectively. This is noteworthy, if we consider that differ-
ent from CE, our procedure builds a model starting from
the target sequence.

Our procedure is also contrasted with the PDB-BLAST
protocol (see Materials and Methods). PDB-BLAST con-
sists of two stages: 1) the protein target profiles are
generated by three rounds of PSI-BLAST algorithm against
the nonredundant database, and 2) a second run is per-
formed by PSI-BLAST against the template sequence
database.

The results (Table II) clearly indicate that the upper
bound accuracy (CE) is superior to the results obtained by
using profile–sequence information (PDB-BLAST), as ex-
pected considering also our results shown above (Table I).
The entropy profile-based method scores close to CE.

However, it is important to remark that CE fails in some
cases. More precisely, about 8% of the CE alignments
receives zero MaxSub points (Table II).

It is surprising that there are few cases in which the
SWA-PP � SF outperforms the CE structural alignment.
An example of this finding is reported in Figure 7.

CONCLUSIONS

In this article, we support the idea that the introduction
of evolutionary information improves the quality of the
fold predictions (Tables I and II). In general, methods,
such as BASIC,7 FFAS,31 or our SWA-PP, which are
different from other faster approaches (e.g., PSI-Blast and
GeneThreader), take advantage of evolution information
in the form of sequence profiles both for the target and
template sequences. Therefore, with SWA-PP, it is pos-

sible to harvest for a given query a homologous sequence
(template) that has diverged beyond the point where its
homology can be recognized by a simple direct comparison.
In this case, a third sequence, intermediate between the
two, can relate them through their sequence profiles.32 For
instance, there are cases in which protein A can be reliably
identified as being homologous to B and B is reliably
homologous to C: this enables A and C to be classified as
homologous, despite the fact that A and C cannot be
directly recognized as related. One example is the one we
show in Figure 7, where the two proteins 1gakA and 1lis_
are detected as remote homologues only when SWA-PP
and the entropy filter criterion are used.

Unfortunately, it is not rare that an incorrect pair
alignment obtains the highest score among the various
possible templates. This is often due to the fact that one
sequence profile (or both target and template profiles)
consists of too few highly similar sequences. In this case,
Eq. 1 can give a high score value, despite the fact that the
corresponding alignment may have a large number of
discontinuous gaps.

To overcome this inconvenience, we propose that the
alignments characterized by an entropy value lower than a
given threshold (�0.5) be discarded. This is equivalent to
discharge all those sequences that are improperly aligned,
possibly when the alignment parameters become unsuited
to select specific templates in the low homology set.
Therefore, our results are indicating that with profiles
containing information about remote homologues, the
SWA-PP program endowed with an entropy filter has a
fold prediction accuracy of 98% and a probability of about
92% to have a significant MaxSub score. The efficacy of our
method is also supported by comparing with what the
structural alignment program CE obtains on the same set.

Our findings support the idea that information theory-
based descriptors play a relevant role in improving the
sensitivity of alignment methods (see also Refs. 29 and 30)
highlighting a pattern for fold recognition based on the
entropy evaluation of profile–profile alignments.
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APPENDIX A

12ASA 1PYSA 1B35A 1B35C 1D1RA 1B6CB 1QGUA 1QGUB
19HCA 1NEW_ 1B3AA 1DOKA 1D2NA 1QVAA 1SHCA 2NMBA
1A0AA 1AM9A 1B3TA 2BOPA 1D2VA 1MHLC 1TCA_ 1THG_
1A0CA 4XIS_ 1B4CA 1PSRA 1D9CA 1FJCA 1UCYE 1UCYH
1A17_ 1E96B 1B4FA 1COKA 1D9NA 1QK9A 1WGJA 1ARB_
1A1Z_ 1NTCA 1B5EA 1BKPA 1DBTA 1DQWA 2BPA1 2BPA2
1A28A 1LBD_ 1B5FB 1FKNA 1DBWA 1DZ3A 2IGD_ 2PTL_
1A34A 1AUYA 1B64_ 1GH8A 1DCEB 1FT1B 2QWC_ 3SIL
1A3AA 1A6JA 1B6E_ 1AYFA 1DCIA 1NZYA
1A3K_ 1C1LA 1B6TA 1F9AA 1DHPA 1FBAA
1A53_ 1NSJ_ 1B87A 1BO4A 1DI0A 1CQKA
1A5R_ 1UBI_ 1B8OA 1ECPA 1DLXA 1QGIA
1A6M_ 1ASH_ 1B9HA 1BJ4A 1DMHA 3PCHA
1A6O_ 2IF1_ 1B9LA 1DHN_ 1DT4A 1VIH_
1A7TA 1SMLA 1BAQ_ 1EYVA 1DUN_ 1DUPA
1A9V_ 1EHXA 1BBHA 1CPQ_ 1DWNA 1MSC_
1AAC_ 1BQK_ 1BCFA 1DPSA 1E70M 1QOXN
1ABA_ 1ERV_ 1BCPD 1PRTF 1EAF_ 3CLA_
1AC5_ 1IVYA 1BD3A 1DQNA 1EERA 1ETEA
1ACP_ 2AF8_ 1BD8_ 2MYO_ 1EWIA 1OTCB
1AD3A 1BPWA 1BDO_ 1FYC_ 1EWXA 1QQ2A
1ADEA 1BYI_ 1BDYA 1RLW_ 1EXG_ 1XBD_
1AFRA 1MHYD 1BE3A 1BE3B 1F2DA 1OASA
1AGDB 1RVV1 1BEFA 1JXPA 1FFKJ 1FFKL
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APPENDIX A (Continued)

1AGJA 2PRD_ 1BG2_ 3KINB 1FFKK 1FJFK
1AH1_ 1CD8_ 1BH9A 1BH9B 1FFKN 1FFKQ
1AH9_ 1D7QA 1BHE_ 1CZFA 1FIPA 1CY5A
1AIR_ 1EE6A 1BK7A 1BOLA 1FJ7A 2ILK_
1AIW_ 1ED7A 1BO9A 1DK5A 1FLTX 1TIT_
1AJ8A 1CSH_ 1BPV_ 1C8PA 1FMB_ 1HVC_
1AJQA 1AJQB 1BQZ_ 1FAFA 1FQTA 1G8JB
1AKHA 1AKHB 1BS9_ 1CEX_ 1FRB_ 1QRQA
1AKO_ 1BIX_ 1BU7A 1EA1A 1FXD_ 2FDN_
1AL3_ 1ATG_ 1BVB_ 1FGJA 1G24A 1LT3A
1ALY_ 1D4VB 1BVWA 1TML_ 1G6GA 1QU5A
1AOEA 1D1GA 1BVYF 1RCF_ 1GAKA 1LIS_
1AOHA 1NBCA 1BX4A 1RKD_ 1GEN_ 1WBA_
1AOIA 1YTW_ 1BXYA 1FFKT 1GKY_ 1NKSA
1AOJA 1AWJ_ 1BY1A 1F5XA 1GPC_ 1GVP_
1AOXA 1ATZA 1BYKA 1DP4A 1HCRA 1TC3C
1AP0_ 1DZ1A 1BYUA 1CTQA 1HNR_ 1HUUA
1APYA 1APYB 1C0NA 1CL2A 1HYP_ 1RZL_
1AQ0A 1LTAC 1C1YB 1LFDA 1IRP_ 2I1B_
1AQB_ 1BBPA 1C3YA 1DQEA 1KVEA 1KVEB
1ARV_ 1BGP_ 1C52_ 1CC5_ 1KWAA 1HAVA
1AUIB 1CLL_ 1C9FA 1D4BA 1LED_ 1NLS_
1AUWA 1FURA 1CAXB 1QI7A 1LMB3 1NEQ_
1AVAC 1HXN_ 1CEM_ 1FCE_ 1MFMA1YAIA
1AVOA 1AVOB 1CEWI 1EQKA 1MRJ_ 1DGWA
1AVPA 1EUVA 1CFE_ 1QNXA 1NEDA 1PMAA
1AW0_ 1CC8A 1CHKA 1EW4A 1NOX_ 1VFRA
1AWD_ 1BYFA 1CK9A 1FFKE 1ONC_ 7RSA_
1AWE_ 1BAK_ 1CKTA 1HRYA 1OYC_ 2DORA
1AXJ_ 1CI0A 1CKV_ 1HQI_ 1PAUA 1PAUB
1AYM1 1AYM2 1CMOA 1TUPA 1PBWA 1TX4A
1AZSA 1FX2A 1CNV_ 1EOKA 1POIA 1POIB
1B0UA 1F2TB 1CNZA 1ISO_ 1PRU_ 1UXC_
1B16A 1BSVA 1CQQA 1PDR_ 1PTY_ 1AOIB
1B20A 1RGEA 1CV8_ 1HUCA 1PYAA 1PYAB

360 E. CAPRIOTTI ET AL.


