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In this paper we aim at determining the key residues of small helical proteins in order to build up reduced
models of the folding dynamics. We start by arguing that the folding process can be dissected into concurrent
fast and slow dynamics. The fast events are the quasiautonomous coil-to-helix transitions occurring in the
minimally frustrated initiation sites of folding in the early stages of the process. The slow processes consist in
the docking of the fluctuating helices formed in these critical sites. We show that a neural network devised to
predict native secondary structures from sequence can be used to estimate the probabilities of formation of
these helical traits as they are embedded in the protein. The resulting probabilities are shown to correlate well
with the experimental helicities measured in the same isolated peptides. The relevance of this finding to the
hierarchical character of folding is confirmed within the framework of a diffusion-collision-like mechanism.
We demonstrate that thermodynamic and topological features of these critical helices allow accurate estimation
of the folding times of five proteins that have been kinetically studied. This suggests that these critical helices
determine the fundamental events of the whole folding process. A remarkable feature of our model is that not
all of the native helices are eligible as critical helices, whereas the whole set of the native helices has been used
so far in other reconstructions of the folding mechanism. This stresses that the minimally frustrated helices of
these helical proteins comprise the minimal set of determinants of the folding process.
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Recently it has been argued that the whole gamut of pos-
sible folding mechanisms spans the range between two ex-
treme models. They are the diffusion-collision model(DC
model) and the nucleation-condensation scenario(NC
model) [1,2] and emphasize, respectively, the hierarchical
and the cooperative component of folding. It has also be-
come clear that managing the complexity of protein folding
requires simplification strategies that rely on minimalist
models of the dynamical processes involved[3–7]. Subscrib-
ing to a hierarchical view of folding, one is allowed to ex-
ploit the modularity of the folding process to uncouple the
formation of global and local structures[1,8,9]. Within this
approach, models depicting the formation of simple elements
of the secondary structure are intended to shed light on the
dynamics and kinetics of elementary events of folding. Nu-
merous theoretical studies, pioneered by the Zimm-Bragg
theory (ZB theory) [10], have been devoted to helix-coil
transitions viewed as the simplest stages of folding. In the
same vein, new theoretical and experimental approaches to
b-hairpin formation have been recently proposed[11–13].
Renewed interest in the processes of helix formation is due
to their importance in the context of bottom-up strategies for
the rational design of proteins[14,15] as well as in hierar-
chical models of folding[1,8,9,16], in which stabilization of
elements of secondary structure precedes the formation of
tertiary interactions. The prototype of the quantitative hierar-
chical theories of folding is the DC model[17–19]. It depicts
the folding of proteins in terms of stochastic encounters of
marginally stable microdomains which, in the case of helical
proteins, coincide with the native helices.

Hints as to the modularity of the folding dynamics of
helical proteins are to be found in Ref.[20] where we have
argued that dissection of folding in temporally distinct events
is feasible in the minimally frustrated initiation sites of fold-
ing (ISs) that trigger the nucleation of the native IS-
containing helices(NIS helices). As in Ref.[20], we restrict
the present analysis to helical proteins in which the search
for the ISs is especially successful.

In the present paper we pursue the goal to identify the
minimal set of determinants of the folding dynamics and
present an effective tool for the calculation of the folding
rates that is based mainly on sequence information. To this
aim, we first set about demonstrating the existence of helical
building blocks that are formed in the course of fast elemen-
tary helix-coil transitions taking place in the ISs. These pro-
cesses result in the stabilization of the precursors of the NIS
helices(IS helices, for brevity). The IS helices are transiently
stabilized in the early stages of folding, i.e., prior to the
establishment of any appreciable amount of tertiary struc-
ture, when short-range interactions(acting between residues
that are close in sequence) overcome the long-range forces
(acting between residues that are distant in sequence). More
precisely, we show that the average thermodynamic proper-
ties that characterize the formation of the IS helices within
the whole protein, are comparable with those of the same
peptides when they are excised from the protein. Second, the
relevance of the IS helices to the folding mechanism is defi-
nitely demonstrated as we show that this set of helices is
sufficient to reconstruct the folding dynamics. To do this we
hypothesize that the IS helices are the fluctuating micro-
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domains that participate in the folding mechanism depicted
as a comparatively slow diffusion-collision process. Using
the DC model[17–19] and the thermodynamic characteriza-
tion of the IS helices we eventually get accurate predictions
of the folding times of small helical proteins with two-state
folding. Finally, we discuss the relationships between our
model and the DC and NC pictures of protein folding.

I. ESTIMATING THE STABILITY OF THE IS HELICES

As a first step we identify the ISs in the sequence of the
protein under study. We have shown that the output of a
neural network can be processed in order to identify the pu-
tative regions of the sequence corresponding to the ISs of
folding of helical proteins[20,21]. For thenth residue being
classified, the output vector can be viewed as a discrete prob-
ability function fphsnd ,pcsnd=1−phsndg defined in the space
of structures[a-helix shd and random coilscd]. phsnd is the
probability that the residue in positionn has helical structure.
The Shannon information entropy for thenth residueSsnd=
−phsndln phsnd−f1−phsndglnf1−phsndg has been shown to be
equivalent to a measure of frustration[22], and can be used
to draw an entropy profile along the protein(Fig. 1). We have
proved that the ISs are found in the lowest entropy minima
corresponding to helical structures[20]. Note that the very
definition of an IS implies that its residues trigger the nucle-
ation step of the coil-to-helix transition of the IS helices they
are in. According to the ZB theory[10], nucleation is fol-
lowed by the elongation step which results in the formation
of the IS helical structure.

To address the thermodynamics of the IS helices we de-
rive their energy landscape from the entropy profile. To elu-
cidate the relationship between the thermodynamics of the

coil-to-helix transition for any residue and the network’s out-
put, let us depict the growth of the helix by means of a free
energy profile,Dgsnd=gsndhelix−gsndcoil, specifying the free
energy cost for the transition of the residue in positionn
[10,23]. Within a continous picture it is straightforward to
check that the relationship betweenSsnd and the free energy
profile is Dgsnd=S8sndfph8sndg−1 (primes indicate derivatives
with respect ton).

The classical scheme for passing from the single-residue
thermodynamics to the thermodynamics of the whole helix is
the ZB theory[10] that is suited to deal with homopolymers
having constant length. However, natural peptides usually
have nonuniform compositions. In addition, they are com-
monly viewed as flickering elements undergoing fluctuations
in length on quite short time scales, as compared with the
time scale of the measuring apparatus or the typical times of
formation of tertiary contacts in protein folding[24–28].
This is consistent with the dissection of the folding process
in fast and slow dynamical subprocesses. Borrowing the ter-
minology of the DC model, the IS helices can be viewed as
fluctuating microdomains that, in the early steps of folding
and under the action of short-range interactions, reach a tem-
porary equilibrium conformation that concludes the local fast
dynamics. In the meantime, the IS helices undergo a slow
diffusion-collision process that mimics the global dynamics.
Such a clear-cut difference in the time scales suggests that
the simplest way to generalize the ZB theory into a descrip-
tion of the fluctuating IS helices is to devise an equivalent
ZB model that is averaged over the possible lengths of the
helix at issue. It should be also remarked that relying on the
neural network to implement the averaged ZB description
automatically takes into account the chemical heterogeneity
of the protein segment.

Using the ZB formalism, we express the equilibrium con-
stantKn for the formation of ann-residue helix in terms of
the equilibrium constants for nucleationsKn

nucl=ssd and
elongationsKn

elong=sn−1d asKn=ssn. Moreover, we take into
account that helices fluctuate among different folded states
with a variable number,i P f1,ng, of helical residues. To
make contact with the experimental helicity measurements,
we assume that the effective equilibrium constantKef f corre-
sponding to the measured helical contents is approximated
by the average constant

Kef f = o
i=1

n

Ki/n = o
i=1

n

ssi/n. s1d

Setting ssi =exps−DGid, where DGi is the free energy of
formation sin RT unitsd of an i-residue helix, we can re-
write Eq. s1d as

Kef f = fexps− DG1d − exps− DGndg/fns1 − sdg. s2d

Within a continuous picture, the total free energyDGi is
written asDGx sas a function of a continuos coordinatexd
and can be calculated asDGx=ex0

x Dgsyddy, wherex0 repre-
sents the coordinate of the local entropy minimum, where the
nucleation process is expected to occur. Using the second
theorem of the meanf29g to compute the jump of the func-

FIG. 1. Information entropy profile vs residue number of the
crystallized fragment(255–316) of thermolysine(PDB code, 1TRL)
calculated according to the procedure of Ref.[20] (see text). The
step function superimposed to the curve indicates the location of the
a-helices predicted by the neural network. The ISs of folding are
defined as the segments classified as helical regions by the neural
network that correspond to the minima of the entropy plot that lie
below a threshold entropyS=0.416[20,21]. The ISs comprise those
residues that deviate from the entropy minimum by less than 0.05
[20]. The predicted helices 282–294 and 300–311 contain two
minima that fulfill this criterion. The ISs span the 287–291 and
303–306 regions(black bars). The first helix does not include any
IS.
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tion exps−DGxd between the first and thenth residuessin
position x0 and x, respectivelyd, Eq. s2d becomes

Kef f = expF−E
x0

j

DgsxddxGDgsjd/s1 − sd, s3d

where jP fx0,xg. The exponential in Eq.s3d can be trans-
formed by using the above mentioned relationship between
Dgsxd and Ssxd. Then integrating by parts and applying the
second theorem of the meanf29g to the resulting integral
leads to

expF−E
x0

j

DgsxddxG = exph− fSsjd − Ssx0dgfph8szdg−1j,

s4d

wherezP fx0,jg. The final form of Eq.s3d as a function of
entropy is

Kef f = exph− fSsjd − Ssx0dg/fph8szdgjS8sjdfph8sjdg−1s1 − sd−1.

s5d

A more manageable form of Eq.(5) ensues if we suppose
that Ssx0d is negligible compared toSsjd. This condition is
certainly fulfilled by good minima that have very low values
of information entropy. Moreover, the last two factors in Eq.
(5) provide logarithmic corrections to the exponent of the
exponential term. Their contribution can be included in the
integral, provided we shift the upper limit of integrationj of
Eq. (4) to a suitable valuey (correspondinglyzP fx0,yg). For
example, the correction due tos1−sd−1 can be readily evalu-
ated provided that the physically meaningful conditions,1
is met. In this case the correction translates to a shift ofj
towardsx0. On expanding the exponential to first order, Eq.
(5) takes the form

Kef f = h1 − Ssyd/ph8szdjS8syd. s6d

Retaining the factorization ofKef f in the product of an ef-
fective nucleation constant and an effective elongation
constantsKef f=KnuclKelongd, we identify the factor in braces
in Eq. s6d with Knucl and factorS8syd with Kelong. For lack
of explicit estimates fory and z we devise an approxi-
mated graphical procedure for evaluatingKnucl and Kelong
from the entropy profile. On account of the general struc-
ture of Eq.s6d, we setKnucl<1−Smin, whereSmin is related
to the entropy minimum. We use the simplest choice
Smin=Ssx0d to evaluate the helicities of the IS helices. A
slightly different choice has proven more effective in the
calculation of the folding rates, as illustrated below and in
the legend of Fig. 2. For the elongation constant we have
set Kelong<Smin8 , whereSmin8 =minh=LS,=RSj and =LS and
=RS are the average entropy gradients in the left and right
sequence regions flanking the ISssee Fig. 2d.

The constantKef f lends itself to the calculation of the
helicity b, i.e., the probability that a peptide is in the helical
state. In order to computeb for an n-residue helix we recall
that, in the case of strong cooperativityss!1d, b<Kn

=Kn
nuclKn

elong (see also Ref.[31]). Thus, using the approxima-

tion b<Kef f for a fluctuating IS helix, we can estimateb by
means of the graphical estimation devised in Fig. 2.

II. THE IS HELICES AS BUILDING BLOCKS OF FOLDING

Having computed the helicityb we are in a position to
investigate the role of the IS helices as building blocks in a
modular mechanism of protein folding. To this aim we in-
quire whether the thermodynamic features of any IS helix
within the native protein can be extrapolated to the same
isolated peptide. To perform this test we have taken from the
literature a set of isolated peptides comprising an IS of the
parent protein and for which the helicities have been deter-
mined experimentally through circular dichroism(CD) mea-
surements[33] (see legend of Fig. 3). Theb value of each IS
helix has been calculated from the related entropy profile
following the procedure shown in Fig. 2, and then has been
compared with the corresponding experimental CD value
(Fig. 3).

We do not expect a perfect correspondence between the
absolute values of CD and calculated helicitiessbd. The main
reason is that the thermodynamic properties of the IS helices
have been computed using the native entropy landscape of
the NIS helices derived from the native structure of the pro-
tein. This procedure would closely approximate the experi-
mental results in the case that the tertiary interactions give a

FIG. 2. Derivation of thermodynamic parameters of the IS heli-
ces from the information entropy profile, through a graphical esti-
mation of Eq.(6). The curve reproduces a stretch of the entropy plot
corresponding to the last NIS helix of protein 1HRC(see Table I
and Fig. 4). The entropy minimumSsx0d is found in x0=96. The
horizontal dashed line signals the average entropykSl of the NIS
helix under study. The residues are divided in two subsetsA
=hresidues withS, kSlj and B=hresidues withSù kSlj=BLøBR.
The horizontal dotted line represents the average entropykSlA cal-
culated over the setA. The vertical arrow represents 1−kSlA that
estimatesKnucl. This amounts to settingSmin=kSlA in the graphical
estimate ofKnucl<1−Smin referred to in the discussion to Eq.(6).
This choice has given optimal results in implementing the DC
model. As explained in the text, the alternative choiceSmin=Ssx0d
=Ss96d made on comparing CD data and calculated helicities(see
Fig. 3), implies that the setA has shrunk tox0. To compute the
average slopes=LS and=RS of the entropy profile(dashed lines in
BL andBR), a least squares procedure has been applied to the data
in BL andBR.
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nearly vanishing contribution to the native structure. How-
ever, we must bear in mind that although the NIS helices are
minimally affected(compared to the rest of the protein) by
the long-range interactions that intervene in the late stages of
folding, the effects of these forces are not completely negli-
gible even in these minimally frustrated regions of the pro-
tein. This introduces a deviation between the properties of
the isolated peptides(not subjected to any tertiary interac-
tions) and the native entropy landscape used to evaluate the
b’s of the IS helices. A further source of discrepancies can be
traced back to the approximations inherent in Eq.(6) and its
graphical estimation(Fig. 2). The issue of the level of noise
affecting the entropy profile has been addressed in Ref.[22].

Nonetheless, if the NIS helices preserve to some extent
the substantial independence on the context that is typical of
the ISs and the IS helices, we are confident that some rela-
tionship exists between theb values and the CD helicities.
Actually, the two sets of values shown in Fig. 3 turn out to be
satisfactorily correlated with correlationr=0.9. This indi-
cates that the essential factors determining the helicity in the
isolated peptides seemingly determine the trend of the helical
content of the IS helices in the protein’s interior. It ensues
that even in the context of the whole protein the IS helices
exhibit the character of semi-independent elements. Such a
minimization of the conflicts between local and global inter-
actions[37] allows us to conclude that, in a sense, the mini-

mally frustrated character of the ISs[20] is inherited by the
IS helices.

Further evidence that the formation of each IS helix
within the full protein parallels, in the average sense de-
scribed above, the process occurring in the isolated peptide,
is provided by the simulations carried out on the isolated
helices of apomyoglobin[38]. The computational data and
our ranking of the IS helices according to theb values agree
in pointing out the largest stability of the NIS helicesG and
H, as compared to the other helical regions.

According to the ZB picture, the coil-to-helix transition in
the nucleation site is expected to be faster than the compara-
tively slow elongation process. Therefore, kinetic studies can
be useful to probe our contention that the putative nucleation
site of an IS helical segment corresponds to the minimum of
the entropy plot. Time-resolved experiments[39] on the he-
lical segments of apomyoglobin indicate that the central re-
gions of helicesG and H (corresponding to segments 102–
115 and 133–143, respectively) undergo the fastest
transitions to the helical conformation. Therefore, they are
likely to include the nucleation sites of theG andH helices.
This is fully confirmed by our predictions, since the entropy
criterion [20] identifies the IS of the IS helixG with the
109–116 segment, and the IS of the IS helixH, with the
125–143 region.

A further test can be carried out on helix 4 of cytochrome
c in which the essential steps of formation have been moni-
tored with NMR experiments[40]. The temporal ordering of
the events as revealed experimentally indicates that residue
95 acquires its helical conformation in the shortest time, fol-
lowed by residue 91 and eventually by residue 100. This
finding is fully confirmed by our analysis. The entropy plot
clearly exhibits a deep minimum at residue 96, whereas the
IS spans the 95–97 segment(see Fig. 4).

III. RECONSTRUCTION OF THE FOLDING DYNAMICS

In order to provide more cogent evidence as to the funda-
mental role of the IS helices in the folding mechanism, we
show that these same helical regions can be used to recon-
struct the whole folding process. As a matter of fact we dem-
onstrate that the IS helices provide the minimal set of deter-
minants which rule the full kinetics of the folding process.
The test consists in computing the folding times of helical
proteins with the DC model, where we equate the IS helices
with the microdomains undergoing the diffusion-collision
processes. The small helical proteins used as a benchmark
and the corresponding IS helices are listed in Table I. The
implementation of the DC model follows the standard ver-
sion [17–19,30–32].

The characteristic timeti j for coalescence of the colliding
microdomains(labeledi and j) can be evaluated as

ti j =
G

D
+

VLs1 − bi jd
ADbi j

. s7d

In Eq. s7d A is the sum of the areas of the colliding micro-
domains that in the spherical approximation are ascribed the
radii Ri andRj. D is the relative diffusion coefficient defined

FIG. 3. Comparison of the helicitiesHsNNd calculated through
the neural network(NN) and experimental helicitiesHsCDd. Circu-
lar dichroism values(CD) were measured on the isolated peptides
indicated in the panel. The labels for ARA, COMA, CIII, 3LZM,
and Sigma are the same used in the original paper reporting the CD
values(see Table 3 of Ref.[34]). In addition we have considered
the data for two helical peptides of the thermolysine segment
(shown in Fig. 1) (spanning the 281–295 and the 301–310 regions),
that were drawn from Ref.[35], and the H and G helices of myo-
globin (PDB code, 1MBD), that were studied in Ref.[36]. The NN
values were estimated by processing the full sequence of the above
mentioned proteins with our neural network-based procedure. The
experimental helicitiesHsCDd are usually expressed as mean helic-
ity of each of theN residues of the peptide, whereN is the number
of the helical residues as determined from crystallographic data. To
remedy the discrepancies betweenN and the number of helical resi-
dues predicted by the neural network,n, we setHsCDdN=nb. The
scatter plot comparesHsCDd with HsNNd=bn/N (HsCDd and
HsNNd have been expressed in percent). The equation in the left
corner refers to the least square line.
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asD=kBTsRi
−1+Rj

−1d /6ph, whereh is the viscosity.G andL
are defined as

G = −
Rmax

2 s5 − 9e + 5e3 − e6d
15es1 − e3d

, s8d

L−1 =
1

Rmin
+ a

aRmaxtanhfasRmax− Rmindg − 1

aRmax− tanhfasRmax− Rmindg
. s9d

G and L depend on the geometric parametersRmin=Ri +Rj,
Rmax=Rmin+linker length and ona=sDtd−1/2, e=Rmin/Rmax

and V=4psRmax
3 −Rmin

3 d /3. t is the time constant for the
coil-helix transition for which we have assigned the val-
ues 0.1 and 1 nssTable IId. These values are consistent
with the values currently used and suggested in the litera-
ture f31,41–43g. The choice of the appropriatet has been
made according to the following heuristic criterion: the
lower the entropy of the IS, the more biased the configu-
rational probability densitysestimated by the output of the
neural networkd towards the helical structure. This, in
turn, implies that the residues at handsbelonging to any
foldond are more prone to reside in helical configurations.

Consequently, the search time to reach the helical state is
shorter. In a refined version of the present diffusion-
collision calculation one can tune thet parameter for each
IS helix. Here we have made use of a more rough crite-
rion, where we have taken into account the average en-
tropy value of all the ISs directly from the entropy plot of
the protein under study. In Fig. 4 the entropy profiles of
2ABD and 1HRC clearly exemplify the difference be-
tween a protein endowed with low-entropy IS helices
s2ABDd and a protein with high-entropy IS helices
s1HRCd. Accordingly, we use a smallt s0.1 nsd for pro-
teins with helices that are characterized by low informa-
tion entropies, and a comparatively largert s1 nsd for pro-
teins with ISs that are characterized by higher information
entropies.

Predicting the structure and the ISs of small proteins like
1ENH is a tough problem for the neural network due to the
small size of the protein. In this case it is likely that bound-
ary effects have a more sensible influence on the reliability
of the prediction. Such effects arise since the sliding input
window of the network(17 residue long) has blank sites until
the center of the window reaches the ninth residue(at the
N-terminal), and as long as thesN−9dth residue (at the
C-terminal) is trespassed. The entropy profile of 1ENH is
noisy and less reliable in theC-terminal region of the se-
quence. To circumvent this difficulty we have used a single-
sequence input for the neural network instead of the
multiple-sequence alignments that have been adopted for the
other four proteins. By so doing helix 3 of 1ENH turns out to
be a NIS helix, although the entropy signal is still quite
noisy.

In the standard DC model[31] the key parameter is the
probabilityPij that takes into account the prerequisites for an
effective collision to occur, i.e., a collision that results in the
stable aggregation of the colliding microdomains, labeledi
and j . When ineffective collisions occur(with probability 1
−Pij) the microdomains bounce back and the diffusional dy-
namics starts anew. According to Ref.[31] we definePij as
Pij

l =gi
ng j

mbi
nb j

msl =m+nd. Indexesn,mù1 refer to the rank,
i.e., the number of IS helices forming each microdomain.
Clearly, l ù2.

The factorbi
1 (folding probability) measures the probabil-

ity that the structures of theith IS helix is sufficiently close
to the native form[31,32]. Estimates forbi

1 are obtained
according to the graphical procedure introduced above.

The factorgi
n (orientational probability) gives the prob-

ability that each microdomain approaches its partner with a
favorable orientation. Estimates ofgk

n in terms of geometrical
features usually result from computing the ratio of the lost
solvent accessible area to the total accessible area[31] (see
Table I). Van der Waals volumes of the helices have been
computed by means of TINKER; the program DSSP pro-
vided the accessible surfaces of the various helices as well as
the surface that is lost upon contact. The parameters used in
our calculations are collected in Tables I and II. Following
the original implementations of the DC model we setbi

m

=1 for the aggregates with rankmù2 [19,30–32]. This
amounts to assuming that stable interactions are established
between microdomains undergoing effective collisions. The

FIG. 4. Entropy profiles of 2ABD and 1HRC, based on the
secondary structure prediction of the neural network. The average
entropy of the ISs of 1HRC, estimated at the minima of the 60s and
90s NIS helices(see Table I) is clearly higher than the average level
of the entropy minima of the NIS helices 1,2, and 4 of 2ABD. The
effects of noise in the entropy signal are visible in that two very
short helices are not predicted by the neural network.
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time evolution of the probabilities of the different aggregates
is ruled by a master equation in which the transition prob-
abilities per unit time are computed assti jd−1 [31]. Following
Ref. [31] we have simplified our simulations by treating the
aggregation reactions as if they were irreversible. Accord-
ingly, we have set equal to zero the transition probabilities
that describe the dissociation of any aggregate.

The DC-like dynamics of the IS helices has been used to
compute the folding times of a set of five proteins whose
kinetics has been experimentally investigated. The results are
displayed in Table II.

IV. DISCUSSION

Apparently, comparison with experimental data shows
that our estimates of the folding times are fairly accurate
(Table II). This indicates that our model has taken into ac-
count all the crucial events that determine the folding kinet-
ics. These results are particularly intriguing since only a sub-
set of the helical regions of each protein have been included
in our simulations of the folding process(Nønh, in Table II).
In this respect the identification of the IS helices with the
microdomains of the DC model introduces a meaningful
novelty as compared with previous implementations of the
DC dynamics in which all of the native helices of the protein
under study were considered in the computational scheme
[17–19,31,32,41,44,51].

The fact that despite this we capture the essentials of the
folding dynamics, suggests that besides driving the initial
steps of folding[20], the IS helices critically control the
kinetics of the whole folding process. As a corollary, this
implies that the settling of non-IS helices into their native
structure occurs in the late stages of folding and is non-rate-
limiting. Notwithstanding the different definition proposed in
this paper, these characteristic features make the IS helices
conceptually similar to the foldons that have been introduced
in Refs. [45,46] as the ultimate determinants of folding.
Therefore, we feel entitled to refer to our picture of folding
as the foldon diffusion-collision model(FDC model).

Clearly, the prominent role assigned in the FDC model to
the IS helices is consistent with the finding that preorganized
elements with nativelike secondary structure play a major
role in the overall folding kinetics of small proteins
[47–49,51]. It has also been argued that topology and stabil-
ity critically affect the folding rate[52–54]. The FDC mecha-

TABLE I. Folding probabilities and geometric features of the IS helices belonging to the five proteins examined in this paper. 1ENH is
the engrailed homeodomain; 1LMB4 is the fourth chain of thel repressor; 1IMQ is the Colicin E9 Immunity Protein Im9; 1HRC is the horse
heart cytochromec and 2ABD is the acyl-coenzyme A binding protein. The helices numbering in the second column is as usual from theN
terminal to theC terminal. The residues in the third column correspond to the ends of the NIS helices predicted by the neural network. The
IS helix column lists the range spanned by each IS helix.bi

1 specifies the folding probability of theith IS helix. The remaining three columns
give the solvent accessible area, the volume of the native helices and the total accessible surface lost upon pairwise collision. The latter figure
is expressed as the sum of the surfaces lost by each microdomain.

Protein Helix Residues IS-helix bi
1 Area sÅ2d Volume sÅ3d Surface losssÅ2d

1ENH 1 8–18 10–14 0.076 1610 1869 Pair(1–2): 244+234

2 23–36 27–28 0.031 1828 2413 Pair(1–3): 197+184

3 40–48 40 0.006 1294 1582 Pair(2–3): 321+286

1LMB4 1 9–26 13–22 0.099 2307 2467 Pair(1–4): 151+157

4 59–70 63–66 0.085 1378 1445 Pair(1–5): 67+76

5 79–90 82–83 0.048 1475 1578 Pair(4–5): 115+99

1IMQ 1 11–24 15–20 0.087 1544 1664 Pair(1–2): 289+267

2 30–41 36–38 0.019 1725 1575 Pair(1–3): 224+245

3 65–77 70–71 0.008 1505 1549 Pair(2–3): 76+59

1HRC 2 61–69 65–67 0.015 1388 1227 Pair(2–3): 309+330

3 90–100 95–97 0.059 1672 1516

2ABD 1 2–13 7–10 0.056 1397 1468 Pair(1–2): 62+60

2 22–30 25–26 0.0005 1289 1241 Pair(1–4): 341+362

4 66–83 70–77 0.018 2077 2385 Pair(2–4): 300+264

TABLE II. Global parameters and comparison of the computed
and experimental folding times of the five proteins listed in Table I.
The first column indicates the PDB code of the proteins.N is the
number of microdomains(i.e., IS helices) used in the FDC model.
nh is the number of native helices of each protein(i.e., the number
of microdomains used in the standard implementation of the DC
model). L is the length of the protein(total number of residues). t is
the adjustable relaxation time of the coil-helix transitions. The guid-
ing principle for the choice of a short or a longt is illustrated in the
text.tcompdenotes the computed folding time andtexp is the experi-
mental folding time. The experimental times of 1ENH has been
taken from Ref.[2]; the data for 1LMB4, 1IMQ, 1HRC, and 2ABD
have been drawn from Ref.[50].

Protein N nh L tsnsd tcompsmsd texpsmsd

1ENH 3 3 54 0.1 30 27

1LMB4 3 5 92 0.1 213 204

1IMQ 3 4 86 1 680 670

1HRC 2 5 105 1 2300 2500

2ABD 3 4 86 0.1 4400 5000

COMPIANI, CAPRIOTTI, AND CASADIO PHYSICAL REVIEW E69, 051905(2004)

051905-6



nism relies essentially on the same ingredients although in a
somewhat different form. Topology of the native state is
linked to the distribution of the IS helices in sequence. This
brings in the separation in sequence of the critical residues
that is related to the contact order introduced in Ref.[55].
The signature of the key residues(spatial proximity in the
native structure) is here supplanted by the minimal entropy
criterion and the participation in the IS helices. Interestingly,
from the DSSP files it turns out that the IS residues listed in
Table I are in mutual contact. Therefore, since they meet the
criterion used in Ref.[55] they contribute to the final value
of the contact order.

As far as the second determinant of folding is concerned,
in the FDC model stability is only partially accounted for by
the folding and orientational probabilitiesbi

n and gk
n. Other

contributions, like the stabilities of the non-IS helices are
neglected whereas long-range interactions among the micro-
domains are only in part and implicitly taken into consider-
ation in thebi

n andgk
n.

In this connection it must be noted that some approxima-
tions affect our results in that our picture relies on a simpli-
fied description of the interactions among colliding helices.
In fact we are using the simplest version of the DC model
where the microdomains undergo a process of free diffusion
with suitable boundary conditions. More sophisticated pic-
tures of the intramolecular collisions are conceivable in
which the parametersbi

n include the effect of activation bar-
riers [18]. In a sense this implies that in the FDC model the
role of long-range interactions is underestimated with respect
to that of short-range interactions. Nonetheless the effects of
this approximation are mitigated in the case that local forces
give a predominant contribution to the definition of the fold-
ing pathway and to the formation of the majority of native
contacts[56,57]. This seems to be the case for the all-a
proteins examined in this work.

From the point of view of the intervening interactions, our
data are also relevant to the debate about the relative weight
of global and local forces in the folding process[56–59].
Detailed studies have stressed that the balance between these
two kinds of interactions is strongly non uniform along pro-
tein sequences[60]. Likewise, our results suggest that local
forces are predominant in the IS helices examined in this
paper.

Recent works have stressed that another kind of balance,
the one between native and non-native forces, determines the
folding mechanism of helical proteins, and in particular its
position within the continuum of models between the DC
and the NC scenarios[61]. In the FDC model both balances
are affected by thebs parameters that assign a variable rela-

tive weight to the native vs non-native interactions and to
local vs global forces. This is a hint as to the fact that the
FDC model may provide a unifying theoretical framework
that shifts from the DC mode(in the case of very stable
foldons) toward less hierarchical mechanisms with decreas-
ing values of thebi

ns. This issue will be investigated in a
forthcoming paper. This feature of the FDC model is in full
accord with the recent extended nucleus theory that similarly
views the DC and NC schemes as manifestations of the same
underlying mechanism[1,2].

The FDC model shows also that local biases for helical
structures make it possible to preaverage fast degrees of free-
dom. More than that, the effectivity of the FDC model in
reproducing the overall kinetics lends support to the minimal
entropy criterion as a useful tool to achieve a substantial
reduction of the relevant degrees of freedom and to focus on
the critical residues by mere inspection of the protein se-
quence. In this respect, the FDC scenario represents a sig-
nificant advancement toward the extension of the Anfinsen’s
thermodynamic hypothesis(sequence determines the native
structure) to the realm of kinetics(sequence determines the
rate and pathways of folding). Finally, the FDC model
stresses the role of the minimally frustrated segments of the
protein’s sequence in the rate-limiting stages of folding.
From the point of view of the fundamental theory, the FDC
model provides effective means to associate the appropriate
minimalist models with real helical proteins[3]. The result-
ing reduced model possesses a simplified(but not oversim-
plified) energy landscape combining the relevant smoothness
and roughness[62] that allow a fairly accurate description of
the whole folding kinetics.
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