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RNA cannot be considered anymore as a simple transfer molecule.

On the contrary, a plethora of noncoding RNA molecules are being

discovered, which is transforming our thinking about how the cell

is regulated. Large and small RNAs carry now a large repertory

of diverse biological functions within cells. Altogether, RNA is

now considered as a major player in the molecular regulation of

essential cellular processes. Similar to proteins, RNAs adopt three-

dimensional (3D) structures that are necessary for performing their

functional roles. Unfortunately, despite advances in understanding

the folding and unfolding of RNA molecules, our knowledge of

the atomic mechanism by which RNA molecules adopt their

biologically active structures is still limited. Moreover, experimental
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determination of RNA structures either by X-ray crystallography or

nuclear magnetic resonance is challenging, given the instability of

RNA molecules. Therefore, computational approaches for predicting

the 3D structure of RNAs are becoming essential in the study of the

molecular mechanisms of RNA function. Here we start by outlining

the general principles of the RNA structure, and then we describe

the databases and algorithms for analyzing and predicting RNA

secondary and 3D structures.

3.1 Introduction

Ribonucleic acid (RNA) molecules are now known to act upon

enzymatic functions [1], gene transcriptional regulation [1–3],

protein biosynthesis regulation [4], development [5], and disease

[6]. Characterizing the molecular details of such a diverse repertory

of functions requires the knowledge of the three-dimensional (3D)

structure of the RNA molecules as well as their interaction with

other biomolecules in the cell. Since the seventies, when the first

RNA structure was determined (i.e., the yeast phenylalanine transfer

RNA [tRNA] [7]), the number of known RNA structures has steadily

grown, and only recently the increase of new structures has been

exponential (Fig. 3.1). However, the first computational algorithms

to predict base pairing from an RNA sequence were developed in

the late seventies/early eighties [8–10]. Another 10 years passed by

before the first RNA 3D structure (i.e., a conserved core of group I

introns) was predicted by the Westhof group [11].

Nowadays, only a limited number of automatic predictions of the

3D structures of large RNA molecules has so far been accomplished

(for some examples see [12–14]). However, and given the limited

number and diversity of known RNA structures, computational

algorithms for RNA structure prediction has been one of the sources

for characterizing the structural diversity in RNA molecules and

its relationship to function [15]. Most of the existing algorithms

rely in the principle that RNA folding is a hierarchical process and

that knowledge of its secondary structure (i.e., the determination of

all base pairing in an RNA sequence) may improve the prediction

of its 3D conformation. Consequently, in recent years, several
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computational programs have been developed, which try to predict

the base pair interactions in RNA from its sequence (see, e.g., [16, 17,

18]). However, the growing amount of available structural data for

RNA molecules and the initial attempts for classifying their motifs

[19, 20] open the possibility for applying comparative approaches

previously used for protein structure prediction [21, 22, 23]. It is

known that in general, it will be more difficult to predict large RNA

3D structures based on comparative approaches than predicting

protein structures [24]. Such a statement relies on (at least) two

properties of RNA: (i) Its folding is essentially driven by its base

pair and its regular motifs [25] (in contrast to the hydrophobic

forces that drive protein folding [26]), and (ii) within the same

functional family, RNA sequence conservation is usually limited

to very short fragments of nucleotides, while still maintaining a

substantial conservation of their secondary structure [25]. Both

principles make necessary that the base pairs of an RNA molecule

need be determined (or predicted) before attempting to predict its

3D structure and that reliable comparative approaches be limited to

RNA sequences that align with more than 60% sequence identity to

a known structure [15].

We begin this chapter by describing the RNA structure and

the initial attempts for classifying of the RNA structural space.

We continue by outlining recent developments and methods for

secondary and tertiary structure prediction from sequences. We

then conclude by discussing possible implications of the use of

comparative approaches to predict the 3D conformation of RNA

sequences based on existing known structures.

3.2 RNA Structure

Structurally, RNA is composed of a combination of riboses, phos-

phates, and aromatic bases. Riboses and phosphates are connected

through the phosphodiester bond, forming a backbone from which

the aromatic bases are attached in a regular fashion through the

C1′ atom of the ribose moiety. As they are being synthesized, RNA

molecules fold mainly by the driving force of hydrogen bonding and

stacking interactions between bases. Long stretches of canonical
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Watson–Crick (WC) base pairs result in an antiparallel double

helix. However, each base has three sides (i.e., WC, Hoogsteen,

and sugar sides) that can interact resulting in 28 different base-

pairing possibilities between two nucleotides [19]. Nevertheless,

canonical helices are maintained by WC base pairing. Additionally,

nucleotide bases may also interact with the ribose or phosphate

atoms as well as noncanonical base–base interactions, which may

result in special RNA geometries. In contrast to deoxyribonucleic

acid (DNA), this plethora of possible pairwise interactions between

bases results in RNA adopting complex 3D structures. A base pair in

RNA is maintained by a minimum of two hydrogen bonds between

the paired nucleotide bases. The combination of base pairs in an

RNA molecule defines the so-called secondary structure, which is

composed of stems (double helices), loops, bulges, stem junctions,

and pseudoknots. The final 3D RNA structure is maintained by

tertiary interactions, including loop–loop interactions, stem–loop

interactions, coaxial stacking, and triple and quadruple helices.

3.2.1 RNA Base Pairs

Over the last few years there has been a rapid growth in the

number of RNA structures made available through the Protein Data

Bank (PDB) (Fig. 3.1) [27, 28]. This increment is mostly due to

the recent structural determination of ribosome machineries [29,

30, 31, 32]. Thus, the availability of such data has allowed the

application of a more robust classification of base pair interactions

in RNA molecules. Although there are differences in the interaction

of two RNA bases, a stable classification depending on the edges

involved in the interaction (i.e., WC, Hoogsteen, or sugar edges)

has already been proposed [33, 34]. In such a classification, each

base can form several nonbonded interactions that involve different

types of atoms: (i) phosphate–phosphate interaction mediated

by water molecules, (ii) phosphate–sugar interaction, (iii) sugar–

sugar interaction, (iv) base–phosphate interaction, (v) base–sugar

interaction, and (vi) base–base interaction. Moreover, these six

different interaction types can be formed in either a cis or a trans
state, resulting in 12 possible different conformations (Fig. 3.2A,B)

[35]. Only about 60% of the base pairs in known RNA structures

adopt the canonical WC–WC interaction in cis conformation.
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Figure 3.1 RNA structure deposition in the PDB database. Green bars

(right y-axis) indicate yearly new PDB entries, and the red line (left y-axis)

represents the total number of RNA structures in the PDB database. The

data ends in July 2012.

3.2.2 RNA Backbone

Differently from proteins, RNA molecules are characterized by well-

packed side chains stabilized by hydrogen bonds and a flexible

backbone. RNA backbone conformation can be described in terms of

the torsion angles α, β , γ , δ, ε, and ζ , while the ribose conformation AQ:

Please

check

what

these ?

symbol

are.

is determined by the endocyclic torsion angles ?0 to ?4 (Fig. 3.2C).

Richardson et al. have analyzed a set of RNA structures with

crystallographic resolutions higher than 3 Å and no atom clashes,

identifying 42 discrete RNA backbone conformers [36]. Different

studies concluded that the RNA backbone is rotameric and can be

classified into discrete conformers [37, 38]. These types of analyses

have been possible because the quality and amount of determined

RNA structures have considerably grown over the last few years [39,

40, 41]. However, most large RNA structures can only be determined

at low resolutions. At this resolution, the phosphate and base plane
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(a)

(b)

(c)

Figure 3.2 Base pair interactions. (A) WC, Hoogsteen, and sugar edges for

a base pair interaction. (B) cis and trans states of a base pair interaction. (C)

RNA backbone torsion angles.
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can be accurately positioned but the sugar ring and the rest of the

backbone atoms may contain errors. Indeed, on average, one error

can occur every two bases based on the analysis and classification of

RNA torsion angles from the RNABase database [39].

3.2.3 RNA Motifs

RNA motifs correspond to recurrent RNA structural elements

subject to 3D spatial constraints [20, 42]. This broad definition

of RNA motifs already indicates the difficulty in uniquely describ-

ing or classifying them. The RNA secondary structure partially

explains some of the known RNA motifs such as bulges, hairpins,

internal loops, and multihelical motifs. However, the prediction of

pseudoknots is a more challenging task in secondary structure

prediction programs. Pseudoknots contain two stem–loop motifs

in which the first stem’s loop forms part of the second stem.

Structural data indicates that the final 3D RNA structure is mostly

determined by base pair stacking (i.e., WC base pairs) and non-

WC interactions. Thus, characterizing, analyzing, and ultimately

predicting the stacking of those bases will help the goal of classifying

complex RNA motifs.

3.3 RNA Structural Databases

Since the seventies, when the first RNA structures became available

[7], there has been an attempt to store, organize, and classify the

RNA structural space. Next, we briefly describe available databases

that classify RNA structures.

The NDB database [27] stores all molecules containing nucleic

acids and complements them with additional information such as

classification of nucleic acids and their interaction with proteins,

backbone conformation angles, and base pair classification. The

SCOR database [41] organizes RNA motifs in a hierarchical classi-

fication system similar to the SCOP database for protein domains

[43]. SCOR classifies RNA structures from three properties: first,

the RNA structural classification describes RNA motifs according to

the number of strands connecting double helices; second, the RNA
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functional classification divides each entry by the biological function

of their molecule, motif, and structural model; and third, the RNA

tertiary interaction group classifies RNA structures by their inter-

and intramolecular interactions differing from WC and non-WC base

pairs. The SCOR database stores 8,270 structural motifs (October

2004), some of which are further classified into functional and RNA

tertiary interaction classes (Table 3.1). The Rfam database [44, 45]

classifies noncoding RNA molecules into families of members that

conserve sequence and secondary structure. The conservation of

RNA secondary structure implies a degree of conservation of its

function [15]. The MeRNA database [46] was manually curated by

analyzing each RNA structure and comparing them to previously

described binding motifs and includes eight well-characterized

metal ion–binding motifs. PseudoBase [47], a searchable database

of pseudoknot secondary structures, contains over 250 records of

pseudoknots determined by crystallography, nuclear magnetic reso-

Table 3.1 RNAbase classification. The number

of RNA structure entries stored in RNAbase

classified by their functional categories

Category Entries

tRNAs 217

rRNAs 283

mRNAs 126

Transcription-related RNAs 86

Introns 26

Splicing-related RNAs 59

Signal recognition particle RNAs 22

Ribozymes 115

RNase P 21

Aptamers 30

Pseudoknots 31

Tetraloops 81

Bulges 69

DNA–RNA hybrids 115

PNA–RNA hybrids 1

Drug–RNA complexes 137

Viral and phage RNAs 221

Abbreviations: mRNA, messenger RNA, RNase P, ribonuclease P.
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nance (NMR), mutational experiments, and sequence comparisons.

PseudoBase++ [48] is an extension of PseudoBase for searching,

formatting, and visualization of pseudoknots. PseudoBase++ links

each pseudoknot in PseudoBase to the GenBank record of the

corresponding nucleotide sequence and allows scientists to auto-

matically visualize RNA secondary structures with PseudoViewer.

It also includes the capabilities of fine-grained reference searching

and collecting of new pseudoknot information. The RNAJunction
database [49] contains structure and sequence information for RNA

structural elements such as helical junctions, kissing loops, internal

loops, bulges, and loop–loop interactions. The database can be

searched using the PDB code, structural classification, sequence, and

interhelix angles. The STRAND database [50] provides a collection

of known RNA secondary structures drawn from diverse public

databases. The database is searchable based on one or various

criteria defined by the user, like RNA type, organism of origin,

external source, length, the number of molecules in the complex, and

other features. Moreover, the RNA Secondary Structure Analyzer,

a tool developed by the same group to analyze RNA secondary

structures, provides comprehensive statistical information on the

secondary structures in the database. MODOMICS [51] is a database

devoted to the systems biology of RNA modification. It provides

information on the chemical structure of modified nucleosides,

pathways of their biosynthesis, sequences of RNAs containing these

modifications, and RNA-modifying enzymes. It contains curated

tRNA and ribosomal RNA (rRNA) sequences and all RNAs with 3D

structures in the NDB database for which modified nucleosides are

known. BPS is a database [52] that stores RNA base pair structures

with quantitative information on the spatial arrangements of

interacting bases, including higher-order base associations and

isosteric pairs. The structures are taken from the NDB database,

and the base pairs are identified and characterized with the 3DNA

software package [53]. The interactions are classified in terms

of residue identities, base pair positioning, and hydrogen-bonding

patterns and related to the structural context in which they occur.

BPS also includes an atlas with representative images of the various

base pairs, higher-order base interactions and isosteric pairs, and

links to statistical information about these groups of structures.
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Table 3.2 SCOR classification. Number of RNA structure motifs stored

in the SCOR database classified by structural, functional, and RNA

tertiary interaction categories

Classification Subclasses RNA motifs

Structural classification Internal loops 5,350

Hairpin loops 2,920

Functional classification Molecular function 480

Motif function 179

Structural models 137

RNA tertiary interaction Coaxial helices 7

Tetraloop-receptor 1

A-minor motif 240

Kissing-hairpin loops 32

tRNA D-loop:T-loop 7

Pseudoknots 17

Ribose zipper 657

The FRABASE database [54] allows for the automatic search of

3D RNA fragments within a set of RNA structures by the input

of either RNA sequence(s) and/or secondary structure(s). The

database contains RNA sequences and secondary structures in

the ‘dot bracket’ notation derived from the PDB, a collection of

atom coordinates of unmodified and modified nucleotide residues

occurring in RNA structures, calculated RNA torsion angles and

sugar pucker parameters, and information about base pairs. The

CoSSMos database [55] is an online database of 3D characteristics of

internal, bulge, and hairpin loops. It contains each loop’s structural

information, including sugar pucker, glycosidic linkage, hydrogen-

bonding patterns, and stacking interaction. Users can search via

general PDB information, experimental parameters, sequences, and

specific motifs and by specific structural parameters in the subquery

page after the initial search.

3.4 RNA Secondary Structure Prediction

Predicting the secondary structure of an RNA sequence can prove

very useful for gaining insight into its tertiary structure and its



October 15, 2013 17:3 PSP Book - 9in x 6in 03-Bin-Wang-c03

RNA Secondary Structure Prediction 31

function [56]. The RNA-folding process is hierarchical [57], which

means that local interactions occur first and are energetically

stronger than tertiary interactions [58]. Therefore, the RNA sec-

ondary structure provides a scaffold to its native 3D structure.

This property already indicates that the RNA secondary structure

can be predicted without the knowledge of tertiary interactions

(to the exception of the so-called pseudoknots). The first methods

for predicting the secondary structure of RNA molecules were

developed assuming that the minimum free-energy conformation

for the native state could be searched by dynamic programming [8,

9] and the Nussinov’s algorithm [10]. The scoring functions for such

approaches were based on free-energy parameters from physics,

which were derived from empirical calorimetric experiments

[59] or from known RNA structures deposited in the PDB [17].

Unfortunately, the minimum free-energy (MFE) approach does not

guarantee that the selected or predicted final structure will be

the native structure and typically corresponds to a near-native

conformation [60]. Other implementations of the MFE principle

include the use of a heuristic search for suboptimal secondary

structures [8, 59, 61], the computation of all suboptimal alignments

near the optimal folding space [62], and the selection of suboptimal

solutions based on RNA shape analysis [63].

In the 1990, McCaskill first implemented a method based on

the equilibrium partition function for secondary structure and as-

sociated probabilities of various substructures [64]. Such a method

allowed the statistical characterization of the equilibrium ensemble

of RNA secondary structures. It has been noted that higher base pair

probabilities, computed by the partition function approach, corre-

spond to higher predictive reliability when considering structures

determined by comparative sequence analysis [61]. More recently,

new computational approaches based on the statistical sampling of

known RNA secondary structures [17] or genetic algorithms [65, 66,

67] have also been implemented for secondary structure prediction.

However, most of the methods described so far are not suitable

for predicting RNA pseudoknots, because they are based on the

recursive approach. It has been demonstrated that the prediction

of secondary structure motifs with pseudoknots is a NP-complete

problem making it computational intractable [68]. To address this
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problem, modified dynamic programming and stochastic context-

free grammar algorithms [69] have been recently introduced. For

example, the PKNOTS program implements thermodynamic folding

in a rather large subclass of pseudoknots on O(N 4) and O(N 6)

time space, which makes it only usable for short sequences [70].

The partition function approach implemented by Dirks [71, 72] has

an O(N 5) complexity. Despite this computational complexity, the

accuracy for pseudoknots prediction has significantly increased by

using an innovative dynamic partner sequence-stacking algorithm

[73].

RNA secondary structure prediction from a single sequence

somehow neglects the evolutionary forces acting upon RNA se-

quence variation. Therefore, the inclusion of multiple sequences for

predicting the RNA secondary structure allows the incorporation of

constraints based on the commonalities of the compared sequences

[74]. Evolution tends to conserve the RNA secondary structure more

than sequence [15]. Indeed, it is known that a mutation in an RNA

molecule is usually compensated by a second mutation that restores

base pair interaction [75, 76]. Several methods for secondary

structure prediction use this principle by attempting to detect such

covariance between different positions in the multiple sequence

alignment. An initial implementation of such an approach used

mutual information theory to extract the covariance between bases

[77, 78]. However, these approaches resulted in limited accuracy

[79] and have been replaced by more recent implementations such

as the RNAalifold program [80], which scores possible solutions by

combining free energy with a covariance term; the Pfold program

[81], which uses an evolutionary SCFG approach; or the ILM AQ:

Please

expand

this

program [82, 83], which combines thermodynamic and mutual

information in a single score. The Foldalign program [84, 85]

heuristically considers local sequence alignments and the maximum

number of base pairs at the same time. The Dynalign program

[86] is a pairwise alignment method that searches for common

low-energy structures between two sequences. The algorithm

complexity is reduced considering a maximum value of the sequence

distance between two aligned residues and by limiting the size of

any internal loop. Finally, the Carnac program [87, 88], which is not

a strict implementation of a simultaneous align-and-fold approach,



October 15, 2013 17:3 PSP Book - 9in x 6in 03-Bin-Wang-c03

RNA Tertiary Structure Analysis and Prediction 33

relies on a thermodynamic model with energy minimization by

combining information from locally conserved elements and mutual

information between sequences. Finally, the RNAforester [89] and

MARNA [90] programs first fold RNA sequences using single-

sequence secondary structure prediction methods and then align

the resulting structures using tree-based methods.

3.5 RNA Tertiary Structure Analysis and Prediction

The increase over the last decade of the number of available

structures deposited in the PDB, including X-ray and NMR models

(Fig. 3.1), has stimulated the structural biology community to

develop computational tools for analyzing the RNA structural space.

Next, we outline some of the existing methods for RNA structure

analysis and prediction.

3.5.1 RNA 3D Structure Analysis

The PRIMOS program [91] describes an RNA structure with

pseudo torsion angles η (C4′
i−1-Pi -C4′

i -Pi+1) and θ (Pi -C4′
i -Pi+1-

C4′
i+1) obtained using the AMIGOS program [92]. Then the search

comparison is done over such simplified version of the RNA

structure, allowing the identification of common small motifs

between two RNAs or an RNA structural motif and a database of

RNA structures. The NASSAM program [93], which was designed

for identifying common substructural motifs between two RNA

structures, implements a simplified vector representation of each

nucleic acid base with respect to its position in the structure. Then

the vectors and their edges are transformed into a graph connecting

the bases and compared using the Ullman subgraph isomorphism

algorithm. The ARTS [94] and DIAL [95] programs for structural

comparison of RNA structures were developed to overcome the

limitation of sequence continuity. The ARTS program describes RNA

structures by a set of contiguous quadrats (i.e., four phosphate

atoms located in two successive base pairs). The program then

identifies similar quadrats between two RNA structures and uses

them as seeds for the final alignment. Finally, the algorithm finds the
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maximal matching in a bipartite graph between the two structures

by extending the structure alignment that maximizes the number

of aligned bases and base pairs. The DIAL program uses a dynamic

programming algorithm to align two RNA structures based on a

scoring function that combines a base, a dihedral angle, and a base-

paring similarity measure. DIAL can be run as a web server and

provides the user with the option of producing global (Needleman–

Wunsch), local (Smith–Waterman), or global/semiglobal (motif

search) alignments. The SARA program [96] applies a unit-vector

root mean square approach to pairwise structural alignment. It

can also assign RNA structures to functional classes as defined in

the SCOR database [97]. The SARSA program [98] uses vectors to

obtain a structural alphabet of RNA backbone conformations. The

input structures are represented using such an alphabet, and the

two RNA structures are finally aligned using dynamic programming

based on the alphabet sequence. The FR3D program [99], and its

web-based interface WebFR3D [100], identifies recurrent motifs in

a base-centered approach using geometric, symbolic, or sequence

information. To score and rank candidate motifs, FR3D calculates

a geometric discrepancy by rigidly rotating candidates to optimally

align with the query motif and then comparing the relative

orientations of the corresponding bases in the query and candidate

motifs. The FASTR3D program [101] allows users to specify a

range of nucleotides from a PDB file as a query to look for similar

structures in a list of PDB files using the secondary structure

information and backbone torsion angles of the query structure.

Alternatively, it can take primary and/or secondary structures as

an input. The RNAMotifScan program [102] detects similar RNA

structure motifs based on the two-dimensional (2D) alignments. It

was observed that many noncanonical base pairs in RNA structural

motifs are isosteric, and these base pairs can interchange with each

other without affecting the overall RNA structure, so RNAMotifScan

takes into account isosteric base pairs and multipairings. The FRASS
program [103] is capable of handling large RNA fragments and

is designed for global similarity searching. The user can select

an entire chain from a PDB file or upload a structure to the

server. The searching method is based on Gauss integrals that

are used to compare the shapes of backbones of RNA molecules.
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The WebR3DAlign server [104] identifies all motifs conserved in

the 3D structures of two possibly homologous RNA molecules. It

produces a nucleotide-to-nucleotide alignment of two 3D structures

to identify conserved motifs, while allowing for differences in the

global structure of the molecules, like domain motions.

3.5.2 RNA 3D Structure Prediction

Predicting the 3D structure of an RNA molecule is straightforward

and usually requires human intervention [105]. In contrast to the

current status of protein structure prediction, a fully automated ap-

proach is not able to reliably predict a large RNA 3D structure from

its sequence [24]. However, over the last few years, a plethora of

methods has been developed that aid the manual or semiautomatic

prediction of RNA structures. For example, the ERNA-3D program

[12] automatically generates an RNA 3D structure, starting for its AQ:

Should

this be

‘from’?

secondary structure. ERNA-3D, which has successfully been used

to model the structure of transfer-messenger RNA molecules [13],

is able to model RNA motifs by using high-resolution structural

information from the SCOR database. The MANIP program [106]

builds complete RNA structural models based on the assembly of

RNA motifs or fragments from a selected library. The final refine-

ment protocol combines canonical as well as noncanonical base-

pairing constraints with restraints imposed by covalent geometry,

stereochemistry, and van der Waals contacts. The MC-Sym program

[107] builds RNA 3D structures using the coordinates and relations

between bases from known RNA structures. Additional constraints

can be applied to the model during the building procedure to

ensure the conservation of particular structural features. Mc-Sym

uses molecular dynamic simulations to minimize the energy of

the predicted structure. The RNA2D3D program [108] builds RNA

structural models by first spacing the atoms of a nucleotide along

a fixed backbone and then predicting the final structure of the

model by an helical winding procedure. The model is further refined

by interactively moving groups of nucleotides to better-fit, known

structural information or by minimizing it using molecular dynamics

simulations. The iFoldRNA program [109] uses coarse-grained

structural models to perform molecular dynamics simulations of
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RNA structures. iFoldRNA has been used to predict the structure

of RNA molecules smaller than 50 nucleotides to near-atomic

resolution (i.e., 2 to 5 Å RMSD to its native structure). The NAST AQ:

Please

expand

this.

program [14] uses a knowledge-based, coarse-grained dynamics

engine for modeling RNA structures. NAST allows the end user

to provide secondary or tertiary experimentally derived restraints

to filter the predicted 3D models. The BARNACLE program [110],

which introduced a probabilistic model of the RNA structure, allows

an efficient sampling of RNA conformations in continuous space.

The Rosetta/FARFAR program [111, 112], inspired by the protein

structure prediction method [113], has been applied to predict the

3D structure of 20 RNA sequences of ∼30 nucleotides. The authors

report that their method is able to correctly predict the native

conformation for ∼90% of WC and about one-third of non-WC base

pairs. Their results also suggest that improvements in the energy

function together with the use of predictions from phylogenetic

approaches are necessary for an accurate structure prediction of

more complex RNA molecules. The RNAmoIP framework [114, 115]

uses integer programming to refine predicted or known secondary

structures to accommodate the insertion of RNA 3D motifs. Then,

the predictions are used as templates to generate complete 3D

structures with the MC-Sym program. Integer programming tech-

niques have gained a lot of interest recently as they provide state-

of-the-art methods for predicting RNA secondary structures with

pseudoknots. The RNABuilder program [116] is a software package

that generates model RNA structures by treating the kinematics

and forces at separate multiple levels of resolution. Kinematically,

bonds in bases, certain stretches of residues, and some entire

molecules are rigid, while other bonds remain flexible. Forces act

on the rigid bases and selected individual atoms. The Assemble
program [117], a graphical user interface (GUI) semiautomated

modeling program that can be performed by homology and ab initio

with or without electron density maps, allows interactive editing

of the secondary structure and the use of a library of annotated

tertiary structures. It combines automated and manual protocols

within an iterative modeling process, where the user can insert

3D motifs and modify backbone angles of a coarse-grained input

structure. ModeRNA [118] is a program for comparative modeling
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of RNA 3D structures. It requires a pairwise sequence alignment

and a structural template to generate a 3D structural model of

the target RNA sequence via either fully automated or script-

based approaches. ModeRNA is capable of handling 115 different

nucleotide modifications and bridging gaps using fragments derived

from an extensive fragment library. The Vfold program [119]

evaluates the stable structures and the folding free energies for RNA

secondary structures and pseudoknotted structures. The program

predicts the secondary structure of the RNA sequence allowing the

build of a coarse-grained structure, which is later refined with an

all-atom representation that relies in a library of PDB fragments.

RAGPOOLS is a recent application of a graph theoretic approach to

represent RNA molecules [120, 121], which allows for a simplified

representation of RNA structural motifs that are then used for

predicting and designing new complex structures of RNA molecules.

Finally, the RSIM program [122] provides a fully automated appli-

cation predicting RNA tertiary structures using fragment assembly

from secondary structure constraints predicted by the ViennaRNA

package. These tertiary structures are further refined with Monte

Carlo simulations utilizing a novel sampling method, an expanded

statistical potential, and a diverse fragment library. Finally, RSIM

stores the refinement paths, which allows the representation of the

predicted RNA conformational space as a graph with secondary

structures as nodes and simulation paths as edges.

3.5.3 RNA 3D Structure Assessment

The large number of new tools for predicting the RNA 3D structure is

likely to result in an increasing number of predicted structures that

will need to be assessed. According to this, the scientific community

is now using known 3D structures deposited in the PDB to develop

knowledge-based potentials of mean force to assess the accuracy of

predicted RNA structures. In the 2009, Jonikas et al. presented the

first coarse-grained knowledge-based function to select native-like

structures [14]. The statistical potential is embedded in the NAST
algorithm and assesses the RNA structure using a representation

based on C3′ atoms. The method has been validated against

thousands of decoys and assessing how well it samples RNA
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structures close to the solved crystal structures. Unfortunately,

the NAST knowledge-based potential provides a nucleotide-based

score that cannot distinguish between models with different atom

positions except for C3′. The NAST algorithm was successfully

used to generate and properly assess the accuracy of a modeled

tRNA and P4–P6 structures. Later, the FARFAR method [112]

implemented a statistical potential developed to score the structures

predicted using the FARNA algorithm. The scoring function in the

FARFAR algorithm is composed of several terms, including pairwise

distance-dependent potentials, hydrogen bonds, hydrophobic and

hydrophilic contributions, and a term describing the screened

electrostatic interactions between phosphates. FARFAR was derived

using a dataset of 32 motifs automatically extracted from a

set of high-resolution crystallographic structures of ribozymes,

riboswitches, and other noncoding RNAs. The RASP potential [123]

is based on a distance-dependent scoring function including four

different types of RNA molecule representations with increasing

level of complexity. The simplest RASP potential included four atom

types corresponding to the four C3′ atoms of each nucleotide. Other

representations consisted of 28 atom types for the backbone atoms,

44 atom types for the backbone and sugar ring, and 23 for all

atoms without taking into consideration the differences between

nucleotides. All the RASP knowledge-based potentials were tested

using a leave-one-out procedure over a set of 85 nonidentical

RNA structures and their associated decoys sets composed of 500

structures with different RMSD and GDT-TS values. The RASP tool AQ:

Please

expand

this.

AQ: If

these are

abbrevi-

ations,

please

expand

them.

Please

check all

abbrevi-

ations in

the

chapter.

was favorably compared with previously existing methods such

as NAST, FARFAR and AMBER [124]. The results showed that the

RASP full atom was the most accurate method in the ranking native

structures. More recently, Bernauer et al. have developed another

distance-dependent statistical potential based on the Dirichlet

process mixture model [125]. This procedure allows us to obtain

an analytical form of the potential as a sum of Gaussian functions

that makes the scoring function fully differentiable and suitable

for energy minimization or molecular dynamics. The method has

been trained using a set of 77 nonredundant and high-quality RNA

structures, and its performances have been evaluated over a set of

decoys generated by molecular dynamics simulations and a normal-
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mode perturbation method. The method has been compared with

FARFAR, resulting in similar accuracies.

3.6 Perspectives

The increase in the number of known RNA structures in the PDB

clearly shows the existence of regular and recurrent 3D RNA motifs.

Thus, the next logical step for structural biologists is to detect, store,

analyze, and classify such structural motifs to aid in ab initio and/or

knowledge-based structural prediction of whole RNA sequences

[19]. The current amount and diversity of known structures of RNA

molecules has allowed the development of a plethora of approaches

for RNA structure prediction, which have been briefly outlined in

this chapter. However, it is difficult to predict whether such methods

will be readily applicable to RNA and, more importantly, will result

in reliable models. The first collective blind test experiment in

RNA 3D structure prediction (called RNA-Puzzles) was recently

organized. RNA-Puzzles is a CASP-like experiment that aims at AQ:

Please

expand

this.

evaluating the accuracy of both manual and automatic methods for

RNA structure prediction [24]. The results from the RNA-Puzzles

experiment provide deeper insights into the accuracy of available

methods for different applications at the same time that stimulate

the RNA structure prediction community for its ongoing efforts to

improve its tools. In its first edition, seven different research groups

that tried to predict the structure of several RNA molecules within

three different types of scenarios participated in the RNA-Puzzles

experiment. Overall, the methods implemented by the Bujnicki,

Chen, and Das groups were scored among the top methods [24].

The website for automatic RNA model evaluation and additional

information about the RNA-Puzzles experiment is http://paradise-

ibmc.u-strasbg.fr/rnapuzzles/.
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