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SUPPORTING MATERIALS AND METHODS 
 
1 Experimental data analysis 
 
Urea-induced equilibrium unfolding transitions were analysed by fitting baseline and transition 
region data to a two-state linear extrapolation model (Santoro and Bolen, 1988) according to 
                                             

    [1] 

 
where ΔGunfolding is the free energy change for unfolding for a given denaturant concentration. 
ΔGH2O the free energy change for unfolding in the absence of denaturant and m a slope term 
which quantifies the change in ΔGunfolding per unit concentration of denaturant. R the gas 
constant. T the temperature and Kunfolding the equilibrium constant for unfolding. The model 
expresses the signal as a function of denaturant concentration: 
 

  [2] 
 
where yi is the observed signal, yU and yN are the baseline intercepts for unfolded and native 
protein, sU and sN are the baseline slopes for the unfolded and native protein, [X]i the denaturant 
concentration after the ith addition, ΔGH2O the extrapolated free energy of unfolding in the 
absence of denaturant, m the slope of ΔGunfolding versus [X] plot. The denaturant concentration 
at the midpoint of the transition, [Urea]0.5, according to equation 1, is calculated as: 
 

         [3]     
 

All unfolding transition data were fitted by using Graphpad Prism 5.04. 

 
 
2 Participant groups and submissions 
 
Lichtarge Lab - Baylor College of Medicine (Group 1) 
The Lichtarge Lab at the Baylor College of Medicine submitted one set of predictions (G1-1) 
using the Evolutionary Action (EA) method (Katsonis and Lichtarge, 2014) that measures the 
fitness effect of coding variants analytically from protein evolution data. The participants used 
the EA scores as predictors of the folding destabilization due to frataxin variations. However, 
although the variants that destabilize protein structure are more likely to have a strong fitness 



	
	

effect, the reverse is not always true. Thus, it is expected that EA tends to overestimate the 
stability effect of some variants. Keeping this in mind, they used 71 homologous sequences of 
the human frataxin sequence (NP_000135) to predict, on a relative scale from 0 (neutral) to 100 
(pathogenic), the fitness effect for each variant. To convert the EA score to ΔΔGH2O values, a 
linear transformation was performed to match EA scores of 30 (the typical cutoff for benign 
variants) to 0 kcal/mol and EA scores of 100 to -3 kcal/mol. 
In further detail, EA estimates the fitness effect of variations by using an equation that states 
the phenotype change (∆φ) equals to the product of the sensitivity of the variation site to 
genotype changes (∂φ/∂γ) and the magnitude of the genotype change (∆γ). The sensitivity of 
the variation site ∂φ/∂γ can be approximated with the Evolutionary Trace (ET) algorithm which 
ranks the relative evolutionary importance of sequence positions in a family of aligned homologs 
(Lichtarge, et al., 1996) and the genotype change ∆γ can be approximated with inverse amino 
acid substitution log-odds. The computed fitness change (∆φ), or Evolutionary Action score, has 
been shown to correlate with experimental loss of function, clinical association, morbidity, and 
mortality(Katsonis and Lichtarge, 2014; Neskey, et al., 2015). EA is available for non-profit use 
at http://mammoth.bcm.tmc.edu/EvolutionaryAction.  
 
Biocomputing Group - University of Bologna (Group 2) 
The Biocomputing Group at the University of Bologna submitted one set of predictions (G2-1) 
using INPS-3D (Fariselli, et al., 2015; Savojardo, et al., 2016). INPS-3D (Impact of Non-
synonymous mutations on Protein Stability) is a method for predicting the impact of non-
synonymous Single Nucleotide Variants (nsSNVs) on protein stability, starting from features 
extracted from the protein 3D structure, namely: relative solvent accessibility and local energy 
change upon amino acid substitution (computed using pairwise residue contact potentials). 
INPS-3D adopts a Support Vector Regression (SVR) approach, trained on seven features 
extracted from the protein primary sequence, including BLOSUM62 substitution score (Henikoff 
and Henikoff, 1992), hydrophobicity (wild-type and variants) (Kyte and Doolittle, 1982), Dayhoff 
mutability index (Dayhoff, et al., 1978) of wild-type, molecular weights of wild-type and variant 
and evolutionary information derived from multiple sequence alignments.  
For this challenge the PDB structure 1EKG was used as reference for the frataxin challenge. 
To each prediction a standard deviation of 0.5 was assigned. INPS-3D is available online at 
https://inpsmd.biocomp.unibo.it.       
 
Zhou Lab - Griffith University (Group 3) 
The Zhou Lab at Griffith University submitted three sets of predictions (G3-1, G3-2, G3-3) using 
the EASE-MM (Evolutionary, Amino acid, and Structural Encodings with Multiple Models) 
algorithm (Folkman, et al., 2016). EASE-MM is a sequence-based method available as a web-
server at http://sparks-lab.org/server/ease. The method predicts protein stability changes using 
only protein sequence information. The structural properties of the protein are predicted using 
SPIDER2 (Heffernan, et al., 2015), which correctly predicted seven out of eight residues from 
the frataxin challenge. EASE-MM comprises five specialized support vector regression (SVR) 
models to predict ΔΔGu of amino acid substitutions located in different secondary structure (SS) 



	
	

elements (helix, sheet, or coil) and with different levels of accessible surface area (ASA) 
(exposed or buried with a 25% threshold). The final prediction is the average of ΔΔGu predicted 
with two models, one selected based on the predicted SS and the other based on the predicted 
ASA of the variation site. EASE-MM was designed using a dataset of 1676 variations (70 
proteins) from the ProTherm database (Kumar, et al., 2006), version February 2013, and tested 
using a dataset of 236 variations (23 proteins) with a low sequence identity (<25%) to the design 
dataset. Importantly, these datasets were manually curated to correct erroneous records in 
ProTherm according to the original publications. 
To build the five models employed by EASE-MM, the design dataset was partitioned according 
to SS and ASA predicted from the protein sequence. A unique set of predictive features was 
identified for each of the five SVR models using the sequential forward floating search (Pudil, 
et al., 1994). As a result, each model included a unique combination of evolutionary 
conservation features (such as the difference of the wild-type and variant amino acid 
probabilities in a multiple sequence alignment), amino acid parameters (such as differences in 
volume, bulkiness, hydrophobicity of the wild-type and variant residues), and predicted 
structural properties (such as SS elements and ASA). Importantly, these features were selected 
using “unseen-protein” 10-fold CV, which was devised to avoid over-fitting on specific proteins 
by splitting the dataset into CV folds so that all variations of a cluster of similar proteins (≥ 25% 
sequence identity) are always contained within a single fold (Folkman, et al., 2014). The same 
CV scheme was employed to optimize hyper-parameters of the SVR models and the radial 
basis function kernel  (C, ε, and γ) using grid search. Finally, to maximize the training dataset 
size, EASE-MM (the final model used in this challenge and available on the web-server) was 
trained using all available variants (by merging the design and test datasets). Of note, no frataxin 
variants or variants of related proteins (≥ 25% sequence identity) were included in the dataset. 
 
Shen Lab - Texas A&M University (Group 4) 
The Shen Lab at the Texas A&M University submitted two sets of predictions (G4-1, G4-2) using 
iCFN (interconnected Cost Function Network) (Karimi and Shen, 2018). iCFN , an efficient and 
exact multi-state protein design algorithm, was first applied here to predict changes in folding 
energy terms upon variation; then a machine learning model was trained with these terms as 
features to predict unfolding. Specifically, the global flexibility of the wild-type frataxin structure 
was modeled using an ensemble of substates (PDB IDs: 1EKG, 3S4M, 3S5E, 3S5F, 3T3L, 
3T3J, 3T3K and 3T3X); variations of interest were introduced to the structures while keeping 
the neighboring residues flexible; and the energetically most favorable combinations of 
substates and conformations were searched for each variant by solving a combinatorial 
optimization problem exactly.  The energy terms of the resulting variant structures (internal 
energy and continuum electrostatics in an MM) were compared to the wild type. These energy 
contributions were selected as features for a linear regression model trained over few observed 
frataxin variant data (D122Y, G130V, I154F and W155R) from (Correia, et al., 2008).  This 
model was used for predicting the ΔΔGH2O values of the variants in the CAGI5 frataxin 
challenge.   
 



	
	

 
Pal Lab - Indian Institute of Science (Group 5) 
The Pal Lab at the Indian Institute of Science in Bangalore submitted two batches of predictions 
using GROMACS (Van Der Spoel et al 2005). The first step in the process was to run all-atom 
molecular dynamics (MD) simulations using GROMACS (Version 4.6.5) software on the wild 
type and all the variant proteins with CHARMM27 (MacKerell, et al., 2000) force field for 1 ns at 
300K temperature. In each case was used a cubic box of a specific size with SPC/E (SPC216) 
water and centered the protein such that it left roughly 10 Å distance to the edge of the box.  
Thereafter the system was neutralized and subjected to steepest descent energy minimization 
to remove any overlapping contacts and reduce the maximum force in the system to 1000 
kJ/mol/nm. This was followed by NVT equilibration, with 2 fs time step, using modified 
Berendsen thermostat with total simulation time of 100 ps under a temperature of 300 K. 
Subsequently the NPT equilibration of 100 ps using 2 fs time step at 1 atm was done using 
Parinello-Rahman pressure coupling. Structures during unconstrained dynamics simulation 
were recorded every 10 ps to give a total of 101 frames for the analysis. After completing the 
MD simulations, the second step of the workflow consisted in clustering the frames on the basis 
of their Root Mean Square Fluctuation (RMSF) using the g_cluster command of Gromacs 
utilities. The RMSF threshold was set to obtain only 2 clusters. It was assumed that the cluster 
which had the highest number of frames is the one having the more stable structures, while the 
one with a lower number of structures corresponds to less stable. These two states were 
assumed to represent the folded and unfolded states, respectively for calculation purposes. In 
the third step, one representative structure from the cluster was selected, that is closest to the 
cluster centroid and used for free energy calculation using the g_mmpbsa method  (Kumari, et 
al., 2014). This method gives 3 types of energies: molecular mechanics potential energy, apolar 
and polar energy. The free energy is calculated by summing up all three energies. The unfolding 
free energy is the difference between the unfolded and the folded state (∆G). Finally the ∆∆G 
was calculated taking the difference between the variant ∆Gs and the wild-type. The obtained 
values were not scaled using any experimental reference. 
 
Kim Lab - University of Toronto (Group 6) 
The Kim Lab at the University of Toronto submitted three sets of predictions (G6-1, G6-2, G6-
3) using the ELAPSIC algorithm (Berliner, et al., 2014; Witvliet, et al., 2016). In brief, a set of 
structural features describing the thermodynamics of the wild-type and variant  proteins, and a 
set of sequential features, describing the impact that the variation is likely to have on the viability 
of the organism were considered, and the gradient-boosting decision tree (GBDT) algorithm 
(Friedman, 2002) was adopted to combine those features into a final score that correlates well 
with the variant-induced change in the Gibbs free energy of folding (ΔΔGfold) and binding 
(ΔΔGbind). FoldX (Guerois, et al., 2002), Stide (Frishman and Argos, 1995), MSMS (Sanner, et 
al., 1996), and a number of in-house developed routines were used to construct the set of 
structural features, and Provean (Choi, et al., 2012), chemical similarity of the wild-type and 
variant amino acids, and metrics evaluating the alignment between the protein in question and 
its closest structural template were used to construct the set of sequential features. The ΔΔGfold 



	
	

predictor is trained using the experimental data in the Protherm (Kumar, et al., 2006)  database, 
while the ΔΔGbind predictor is trained using variations from the Skempi dataset (Moal and 
Fernandez-Recio, 2012). In both cases, the hyperparameters of the GBDT algorithm are 
selected by maximizing a metric which includes the accuracy of the predictor on the training 
dataset, evaluated using 6-fold cross-validation, as well as the accuracy of the predictor on a 
validation dataset containing benign variants as well as variants involved in disease. The 
purpose of this submission to the CAGI5 frataxin challenge was to validate the accuracy of the 
ELASPIC webserver (Witvliet, et al., 2016) and, more specifically, to make sure that no overfit 
on the features extracted from FoldX, Provean, and other tools was present. To that end, the 
first submission (G6-1) contains variant ΔΔG values calculated using the ELASPIC webserver, 
the second submission (G6-2) contains ΔΔG values calculated using FoldX, and the third 
submission (G6-3) contains the deleteriousness scores calculated using Provean. 
 
 
3 Measures of performance 
 
Performance in regression mode 
For evaluating the performance of the methods in the regression task we compared the 
predicted and experimental values of the variation of free energy change upon amino acid 
substitution (ΔΔGH20). 
The standard scoring values calculated in our assessment are the Pearson, Spearman and 
Kendall-Tau correlation coefficients (rP, rS, and rKT respectively), the root mean square error 
(RMSE) and the mean absolute error (MAE). They are defined as follows: 

    [4] 

 

  [5] 

 

   [6] 



	
	

       [7]  

       [8]  

 

where and  are the predicted and experimental ΔΔGH2O values respectively and , 

 their ranks. 

 

Performance of the binary classifier 

For the assessment of the frataxin challenge we transformed the predictions in a binary 
classification task considering a threshold of -1.0 kcal/mol for discriminating between 
destabilizing variants (ΔΔGH2O < -1.0 kcal/mol), indicated as negative cases, and not 
destabilizing variant (ΔΔGH2O ≥ -1.0 kcal/mol), indicated as positive cases. A representation of 
the classification of the 8 points in the frataxin dataset is plotted in Fig. S1. 

According to the previous classification scheme, for each submission we assessed the 
performance using the following metrics: true and false positive rates (TPR, FPR) and balanced 
accuracy (BQ2) 

 

 [9] 

 

where N and P are the number of negative and positive cases, TN and FN are the true and 
false negative, and  TP and FP are the true and false positive respectively. In our assessment 
we computed the Matthew’s correlation coefficient MCC as: 

 

 [10]  

 

and we also calculated the area under the Receiver Operating Characteristic (ROC) curve 
(AUC), by plotting the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) 
at different classification thresholds.  

yi yi r(yi )

r(yi )
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SUPPORTING TABLES 
 
Supporting Table S1. Experimental ΔΔGH20 values from CD and Fluorescence 
 

DNA  
(hg38) 

mRNA  
(NM_000144.4) 

Protein 
(NP_000135.2) 

ΔΔGCD  
kcal/mol 

ΔΔGFlu  
kcal/mol 

chr9:g.69053187A>G c.311A>G p.D104G 0.2±0.7*  0.6±0.5* 
chr9:g.69053196C>T c.320C>T p.A107V 0.8±1.0* -0.7±0.5* 
chr9:g.69053201T>C c.325T>C p.F109L -2.1±0.6* -3.6±0.4* 
chr9:g.69053244A>C c.368A>C p.Y123S -4.9±0.5* -5.4±0.4* 
chr9:g.69065035G>T c.482G>T p.S161I -3.3±0.7* -2.9±0.5* 
chr9:g.69072648G>T c.519G>T p.W173C -9.2±0.5* -9.8±0.4* 
chr9:g.69072671C>T c.542C>T p.S181F -3.1±0.5* -2.9±0.5* 
chr9:g.69072734C>T c.605C>T p.S202F -0.2±0.6* -0.2±0.5* 

 
Variation of unfolding free energy change at zero solvent concentration (ΔΔGH2O) obtained by 
circular dichroism (ΔΔGCD) and Fluorescence (ΔΔGFlu). These values are calculated using the 
experimental unfolding free energy of wild-type and variant protein recently published 
(Petrosino, et al., 2019). The variant p.W173C does not fold into a three-dimensional. Thus, for 
calculating the ΔΔGH2O of p.W173C we assumed that its ΔGH2O = 0 kcal/mol. It follows that 
ΔΔGH2O is equal to -ΔGH2O of the wild-type, which is -9.50 kcal/mol. 
 
 
Supporting Table S2.  Summary of the prediction submitted by the participants 
 

Group Institution Main Method Submissions 

Lichtarge Lab Baylor College of Medicine, 
Houston (USA) 

EA G1-1 

Biocomputing Group University of Bologna (Italy) INPS-3D G2-1 

Zhou Lab Griffith University, Brisbane 
(Australia) 

EASE-MM G3-1,G3-2, G3-3 

Shen Lab Texas A&M University, 
College Station (USA) 

iCFN G4-1, G4-2 

Pal Lab Indian Institute of Science, 
Bangalore (India) 

GROMACS G5-1, G5-2 

Kim Lab* University of Toronto 
(Canada) 

ELAPSIC G6-1, G6-2, G6-3  

 
Predictions submitted by the participants are indicated with the number of the group and the 
number of the submission. * The submissions from Kim’s Lab labelled with G6-R1, G6-R2 and 
G6-R3 are the reverse submissions of G6-1, G6-2, G6-3 respectively. 



	
	

Supporting Table S3. Classification performance on the frataxin challenge dataset 
 

Group Submission BQ2 MCC AUC TN FP FN TP 
Kim Lab G6-R1 0.80 0.60 0.93 3 2 0 3 
Biocomp G2-1 0.80 0.60 0.80 3 2 0 3 
FoldX - 0.73 0.47 0.87 4 1 1 2 
Zhou Lab G3-1 0.70 0.45 0.80 2 3 0 3 
I-Mutant2.0 - 0.70 0.45 0.73 2 3 0 3 
Lichtarge Lab G1-1 0.63 0.26 0.87 3 2 1 2 
Shen Lab G4-2 0.70 0.45 0.60 2 3 0 3 
Kim Lab G6-R2 0.63 0.26 0.80 3 2 1 2 
Pal Lab G5-1 0.63 0.26 0.67 3 2 1 2 
Shen Lab G4-1 0.60 0.29 0.60 1 4 0 3 
Kim Lab G6-R3 0.50 0.00 0.80 5 0 3 0 
Pal Lab G5-2 0.50 0.00 0.27 5 0 3 0 
Kim Lab G6-3 0.50 0.00 0.20 0 5 0 3 
Kim Lab G6-2 0.50 0.00 0.20 0 5 0 3 
Kim Lab G6-1 0.50 0.00 0.07 0 5 0 3 

 
The measures of performance are defined above (section 3). BQ2 = Balanced accuracy. MCC 
= Matthews correlation coefficient. AUC = Area Under the ROC Curve. TN = True Negative. FP 
= False Positive. FN = False Negative.TP = True Positive. 
 
 

Supporting Table S4. Classification performance on the frataxin challenge dataset excluding p.W173C 
 

Group Submission BQ2 MCC AUC TN FP FN TP 
Kim Lab G6-R1 0.75 0.55 0.92 2 2 0 3 
Biocomp G2-1 0.75 0.55 0.75 2 2 0 3 
FoldX - 0.71 0.42 0.83 3 1 1 2 
Shen Lab G4-2 0.75 0.55 0.58 2 2 0 3 
Zhou Lab G3-1 0.63 0.35 0.75 1 3 0 3 
I-Mutant2.0 - 0.63 0.35 0.67 1 3 0 3 
Shen Lab G4-1 0.63 0.35 0.67 1 3 0 3 
Lichtarge Lab G1-1 0.58 0.17 0.83 2 2 1 2 
Kim Lab G6-R2 0.58 0.17 0.75 2 2 1 2 
Pal Lab G5-1 0.58 0.17 0.58 2 2 1 2 
Kim Lab G6-R3 0.50 0.00 0.75 4 0 3 0 
Pal Lab G5-2 0.50 0.00 0.33 4 0 3 0 
Kim Lab G6-3 0.50 0.00 0.25 0 4 0 3 
Kim Lab G6-2 0.50 0.00 0.25 0 4 0 3 
Kim Lab G6-1 0.50 0.00 0.08 0 4 0 3 

 
The measures of performance are defined above (section 3). BQ2 = Balanced accuracy. MCC 
= Matthews correlation coefficient. AUC = Area Under the ROC Curve. TN = True Negative. FP 
= False Positive. FN = False Negative.TP = True Positive.  



	
	

SUPPORTING FIGURES 
 
 

 
 
Supporting Figure S1. Comparison of the experimental ΔΔGH2O values from CD and 
Fluorescence. Classification of the variants in destabilizing (in the red box) and not destabilizing 
(in the blue box) using a ΔΔGH2O discrimination threshold of -1.0 kcal/mol. 
 
 
 

 
 
Supporting Figure S2. Regression analysis for the best prediction submitted by each group. 
The measures of performance rP, rS, rKT, RMSE and MAE are defined above. 


