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Abstract

In silico approaches are routinely adopted to predict the effects of genetic variants

and their relation to diseases. The critical assessment of genome interpretation

(CAGI) has established a common framework for the assessment of available

predictors of variant effects on specific problems and our group has been an active

participant of CAGI since its first edition. In this paper, we summarize our experience

and lessons learned from the last edition of the experiment (CAGI‐5). In particular,

we analyze prediction performances of our tools on five CAGI‐5 selected challenges

grouped into three different categories: prediction of variant effects on protein

stability, prediction of variant pathogenicity, and prediction of complex functional

effects. For each challenge, we analyze in detail the performance of our tools,

highlighting their potentialities and drawbacks. The aim is to better define the

application boundaries of each tool.
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1 | INTRODUCTION

Computational tools for predicting the effects of genetic variants

are of invaluable importance for complementing experimental

approaches in the dissection of the complexity underlying many

human diseases. The development of tools for the prediction of

variant effects is nowadays a major line of research in bioinfor-

matics and, therefore, many different methods have been

described in the past few years (Niroula & Vihinen, 2016). One

major issue concerns the ability to effectively assess the prediction

performances of available tools to highlight potentialities and

drawbacks of each method with respect to different variant‐effect‐
related prediction tasks.

The critical assessment of genome interpretation (CAGI) is a

community‐wide, international experiment aiming at assessing

different methods and approaches for predicting and interpreting

the effects of genetic variants. The CAGI is a periodic experiment

(typically ran every 2 years), which has reached its fifth edition. The

first one has been carried out in 2010 and the last one, the CAGI‐5,
took place in 2018 and consisted of 14 different prediction

challenges covering a wide spectrum of biological problems related

to variant effect prediction. Over the years, the CAGI experiment has

been significantly contributing to the field, acting as a major driver

for testing novel methods and stirring new ideas for variant effect

prediction and interpretation.

We have been active participants of the CAGI experiment since

its first edition. Indeed, our research activity focuses on the

development of tools for genetic variant interpretation, for relating

variants and diseases, (Calabrese, Capriotti, Fariselli, Martelli, &

Casadio, 2009; Capriotti, Calabrese, & Casadio, 2006; Casadio,

Vassura, Tiwari, Fariselli, & Martelli, 2011), and for evaluating the

impact of variations on protein stability, (Capriotti, Fariselli, Rossi, &
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Casadio, 2008; Casadio et al., 2011; Fariselli, Martelli, Savojardo, &

Casadio, 2015; Savojardo, Fariselli, Martelli, & Casadio, 2016).

In this paper, we analyse the results obtained by our group on a

selection of five different CAGI‐5 prediction challenges involving the

following genes: FXN (frataxin), TPMT‐PTEN (thiopurine S‐methyl-

transferase and phosphatase and tensin homolog), CHEK2 (check-

point kinase 2), PCM1 (pericentriolar material 1), and GAA (acid

α‐glucosidase). We classified these challenges into three different

categories on the basis of the nature of the underlying prediction

task. In particular, we have challenges requiring assessing the impact

of variations on protein stability (FXN and TPMT‐PTEN), challenges

asking to predict variant pathogenicity (CHEK2) and complex

challenges requiring to assess different types of functional effects

not directly related to the two above categories (PCM1 and GAA).

Here, the aim is to summarize our experience on CAGI‐5 to highlight

pros and cons of our approaches for the different challenge

categories, as well as trying to define general guidelines for the

proper selection of tools when addressing complex prediction tasks.

2 | METHODS

2.1 | SNPs&GO: A predictor for annotating the
pathogenicity of a protein variation

SNPs&GO (Calabrese et al., 2009) is a method based on support

vector machines for predicting the probability of a single amino acid

variation (SAV) to be pathogenic. The method elaborates informa-

tion extracted from protein sequence, multiple sequence alignment

(MSA) of similar proteins and protein function. Sequence features

include the SAV type and the composition of the environment

around the variant site. Features derived from MSA include the

frequencies of wild‐type and variant residues, the conservation

index and the number of aligned sequences. Functional information

is encoded by means of a protein‐specific (SAV independent)

descriptor derived from the distribution of Gene Ontology (GO)

annotations in the UniProtKB database. In the preprocessing phase,

for each GO term, the frequencies of association to proteins

carrying pathogenic and neutral SAVs are estimated and the

corresponding log‐odd value (LGO) is computed. Then, in the

prediction phase, a single descriptor is computed by summing

the LGO values of the GO term associated to the input protein (see

Calabrese et al., 2009 for details).

SNPs&GO is available as web server at https://snps‐and‐go.
biocomp.unibo.it/snps‐and‐go/.

2.2 | Impact of non‐synonymous mutations on
protein stability (INPS) and INPS‐3D predictors

INPS (Fariselli et al., 2015) is a method for predicting the impact of

SAVs on protein stability starting from protein sequence. In

particular, it estimates the difference of Gibbs free energy change

(ΔG) between wild‐type and variant proteins (ΔΔG). INPS adopts a

support vector regression approach trained on seven features, six of

which are extracted from sequence and one from a hidden Markov

model (HMM), whose parameters are estimated from the MSA of

chains sharing similarity with the input protein. The features derived

from sequence include (a) the BLOSUM62 score corresponding to

the substitution from wild‐type to variant residues, (b) the Dayhoff

mutability index of the wild‐type residue, (c,d) the molecular weights

and (e,f) Kyte‐Doolittle hydrophobicity values of wild‐type and of

variant residues, respectively. The seventh feature stems from the

difference of the HMM‐computed Viterbi scores of wild‐type and

variant sequences.

When necessary, we used INPS‐3D (Savojardo et al., 2016), which

extends INPS by including, when available, features extracted from

the protein 3D structure. These consider the relative solvent

accessibility as computed by DSSP (Kabsch & Sander, 1983) and

the local energy change upon variation, estimated as the difference

between average pairwise residue‐contact potential (Bastolla,

Farwer, Knapp, & Vendruscolo, 2001) of wild‐type and variant

proteins.

INPS and INPS‐3D are both available through the INPS‐MD web

server at https://inpsmd.biocomp.unibo.it.

2.3 | Pathogenicity and perturbation: Pd and Pp

indexes

The disease and perturbation probability indexes (Pd and Pp; Casadio

et al., 2011) associate each SAV type (i.e., wild‐type and variant

residue pair) to the probability of being disease‐related (Pd) and of

perturbing the protein stability (Pp), respectively. The probability

indexes were statistically derived from a data set of 17,170 SAVs in

5,305 proteins retrieved from data available at UniProtKB (release

2010_04), dbSNP (build 132), OMIM and ProTherm (Kumar et al.,

2006). The databases include variations related to disease, neutral

variants as well as effects of variants on protein thermodynamic

stability (Casadio et al., 2011). Only SAVs deriving from single‐
nucleotide variations (SNPs) are considered. Moreover, SAV types

lacking associated thermodynamic data in ProtTherm were filtered

out. As a result, Pd and Pp are available for 141 SAV types (Casadio

et al., 2011).

2.4 | CAGI‐5 challenges

Our research group participated in several challenges of the fifth

edition of the CAGI (CAGI‐5), which took place in 2018. Our

submissions were based (directly or indirectly) on previously

developed tools for assessing whether protein variations are related

to disease, including SNPs&GO and the disease probability indexes

(Pd), and tools for the prediction of the impact of protein variants on

protein stability like INPS/INPS‐3D predictors and the perturbation

probability index (Pp).

In this paper, we analyze submitted as well as newly generated

predictions for five different CAGI‐5 challenges: Frataxin, TPMT‐

PTEN, CHEK2, PCM1, and GAA, which are classified into three

different categories:
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• Challenges related to prediction of the effect of variations on

protein stability, measured both directly (Frataxin) or indirectly

(TPMT‐PTEN) using different experimental methods.

• Challenges related to the evaluation of the pathogenicity of

protein variations, as assessed directly in humans (CHEK2).

• Challenges that require to address complex problems of different

nature, including the evaluation of functional effects of variations

as assessed on model organisms different from humans (PCM1) or

functional effects not directly related to protein stability and/or

disease onset (GAA).

In the following, we will describe our approaches for each of the

challenges.

2.4.1 | Frataxin challenge

For the CAGI‐5 Frataxin challenge, participants were provided with a

data set comprising eight somatic SAVs of the frataxin protein (FXN),

extracted from the Catalog of Somatic Mutations in Cancer

(COSMIC) database (Tate et al., 2018) and already known as involved

in neoplastic disease and/or cancer. Predictors were asked to submit,

for each SAV in the data set, ΔΔG values in kcal/mol, namely the

difference of unfolding free energies (ΔG) between mutant and wild‐
type proteins, extrapolated at concentration zero of denaturant.

Experimental ΔΔGs were obtained at the Sapienza University, Rome,

Italy (Petrosino et al., 2019).

We tackled the Frataxin challenge running the INPS‐3D predictor

directly on the available reference PDB structure (1EKG) and

obtaining a ΔΔG value for each SAV. Raw INPS‐3D predictions were

then submitted without any post‐processing.

2.4.2 | TPMT‐PTEN challenge

In the CAGI‐5 TPMT‐PTEN challenge, predictors were asked to

estimate the impact on protein stability of a large panel of SAVs of

human thiopurine S‐methyltransferase (TPMT) and phosphatase and

tensin homolog (PTEN) proteins. Experimental stability scores were

assessed by data providers using a multiplexed variant stability

profiling (VSP) assay, which uses a fluorescent reporter system to

measure the steady‐state abundance of missense protein variants

(Yen, Xu, Chou, Zhao, & Elledge, 2008). Submitted predictions needed

to be scaled in the range [0, +∞], where a value equal to 0 means that

the variant is totally unstable, 1 means wild‐type stability (neutral)

and >1 means stability greater than the wild type.

We predicted the impact on protein stability using both INPS and

INPS‐3D predictors. In particular, we first mapped SAVs on available

3D structures from PDB and we predicted ΔΔGs with INPS‐3D. All

remaining SAVs that could not be mapped on 3D structures, were

predicted using INPS on the PTEN and TPMT sequences available at

UniProtKB.

ΔΔG values predicted by either INPS or INPS‐3D were calibrated

and rescaled in the required range using data from a functional

characterization study of Salavaggione et al., (2005). In this study,

functional effects were experimentally evaluated for 11 TPMT SAVs

(not included in the challenge data set). We used this experimental

evidence for estimating a linear model to map INPS and INPS‐3D
ΔΔGs onto the requested range (1 =wild type, 0 = totally destabiliz-

ing, >1 = stabilizing). The same calibration procedure was applied to

both proteins. For sake of comparison, we complemented our

predictions including the protein stability perturbation probability

index (Pp).

2.4.3 | CHEK2 challenge

The CAGI‐5 CHEK2 challenge focus on variants of the human

checkpoint kinase 2 (CHEK2), which is involved in breast cancer. Data

provided include a panel of 34 SAVs obtained from targeted

resequencing study on 1,000 Latina breast cancer cases and 1,000

ancestry‐matched controls. Predictors were asked to provide the

probability pcase for a variant to occur in a case. A pcase > .5 means

that the variation is pathogenic, a pcase = .5 means that the variation

is neutral (occurring with the same frequency in both populations)

while a value below .5 indicate that the variation is protective.

For this challenge, we used both the disease probability index (Pd)

and SNPs&GO to assess pathogenicity of each variant. Furthermore,

we complemented the above approaches with methods for assessing

protein perturbation, including INPS and the perturbation probability

index (Pp).

All the methods did not provide information about protective

variants, hence predictions are limited to pcase ≥ 0.5. When Pd or Pp

are used, we predicted a pcase = 1 for all variations having Pd

(Pp)≥ 0.8 and a pcase = 0.5 for all variations with Pd (Pp) ≤ 0.4, while

values 0.4 < Pd (Pp) < 0.8 were linearly rescaled in the range [0.5,1].

From SNPs&GO output, we derived a pcase in the range [0.5,1]

using class predictions (C, neutral or disease) and reliability indexes

(RI, from 0 to 10). In particular, we linearly mapped SNPs&GO output

to [0.5,1] such that a prediction (C = neutral, RI = 8) corresponds to

pcase = 0.5 and a prediction (C = disease, RI = 8) corresponds to

pcase = 1. We set the maximum RI to 8 because this is the maximum

value found in this particular set of predictions.

INPS ΔΔG output was rescaled in the range [0.5,1] such that

pcase = 1 if |ΔΔG| ≥ 1 kcal/mol, pcase = 0.5 if 0.0 kcal/mol ≤ |ΔΔG| < 0.5

kcal/mol while any 0.5 kcal/mol < |ΔΔG| < 1.0 kcal/mol was identically

mapped in the range [0.5,1].

2.4.4 | PCM1 challenge

The CAGI‐5 PCM1 challenge required to predict the effect of a set

of SAVs on zebrafish brain development. In particular, a panel of

38 variants within the pericentriolar material 1 (PCM1) gene was

assayed on a zebrafish model to determine their impact on the

volume of the posterior ventricle area. SAVs were then classified

in three different categories: benign (having no impact on

zebrafish brain formation), pathogenic (completely disrupting

brain formation), and hypomorphic, characterized by a partial loss

of function.
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Our submission was based on predictions obtained using the

disease probability index (Pd), which assigns to each SAV

the probability of being associated with the disease. According to

the Pd values, variants were assigned with a functional effect,

considering a SAV as pathogenic when Pd ≥ 0.6, hypomorphic when

0.4 < Pd < 0.6 and benign if Pd ≤ 0.4.

We complemented the above approach with predictions based on

the assessment of the impact of SAVs on protein stability. In

particular, we adopted the perturbation probability index (Pp) and

the INPS predictor (using the entry UniProtKB Q15154). Similarly to

Pd, thresholds on values of Pp were defined for assigning variant

function effects (the same thresholds, 0.6 and 0.4, were adopted).

INPS ΔΔG predictions were mapped to three classes according to the

following scheme: pathogenic if |ΔΔG| ≥ 1 kcal/mol, hypomorphic if

0.5 kcal/mol ≤ |ΔΔG| < 1 kcal/mol and benign if |ΔΔG| < 0.5 kcal/mol.

2.4.5 | GAA challenge

The CAGI‐5 GAA challenge focused on predicting the effect of naturally

occurring variations on enzymatic activity of the human glucosidase α

acid (GAA). Experimental enzymatic activity was assessed by data

providers (BioMarin Pharmaceutical) for 356 novel missense mutations

extracted from the ExAC data set. Plasmids containing complementary

DNAs (cDNAs) encoding each of the mutant proteins were transfected

into an immortalized Pompe patient fibroblast cell line, with no GAA

activity. After 72 hr, cells were lysed, and GAA activity in the lysate was

assessed with a fluorogenic substrate. Participants were asked to submit,

for each variant in the panel, a numeric value v≥0 representing relative

enzymatic activity with respect to wild type: v=0 indicates no activity,

v=1 wild‐type activity, v>1 increased activity with respect to wild type.

Our submission for this challenge was based on SNPs&GO whose

output was linearly rescaled in the range [0,1]. Here we included

predictions obtained with the disease and perturbation probability

indexes (Pd and Pp), and INPS. Pd and Pp were directly used without

any preprocessing. INPS ΔΔG outputs were linearly remapped in the

range [0,1].

2.5 | Scoring the predictions

To score the prediction, we divided the five CAGI challenges into two

categories: Frataxin, TPMT‐PTEN, and GAA are regression tasks,

whereas CHEK2 and PCM1 are binary classification problems.

Regression challenges were scored using the following scoring

measures:

• Pearson correlation coefficient (⍴)

• Spearman rank correlation coefficient (rs)

• Kendall Tau rank correlation coefficient (τ)

• Root mean square error (RMSE)

• Mean absolute error (MAE)

Binary classification tasks were evaluated using standard scoring

indexes (Vihinen, 2012):

• Sensitivity (SEN)

• Specificity (SPE)

• Positive predictive value (PPV)

• Negative predictive value (NPV)

• Accuracy (ACC)

• Matthews correlation coefficient (MCC)

• F1 measure (F1)

3 | RESULTS

3.1 | Prediction of SAV effect on protein stability:
Frataxin and TPMT‐PTEN challenges

3.1.1 | Frataxin challenge results

As detailed in Section 2, the Frataxin challenge required to submit

ΔΔG predictions for eight SAVs of the human frataxin protein (FXN).

We evaluated the performance of our INPS‐3D predictor with the

regression analysis (Table 1). A comparison of experimental and

predicted ΔΔG is shown (Figure 1). When INPS‐3D is scored as

binary classifier, the eight variants are split into in two subsets,

corresponding to destabilizing and nondestabilizing SAVs. In parti-

cular, adopting a threshold of −1 kcal/mol on experimental ΔΔG, five

out of eight variants are destabilizing. The same threshold is applied

to INPS‐3D predictions. Table 1 lists classification scoring indexes.

Results indicate that INPS‐3D performs very well on the task,

achieving very high performances in both regression and classifica-

tion schemes. According to the official CAGI‐5 assessment, INPS‐3D
is among the top‐performing methods participating to this challenge.

Our method fails on predicting the single SAV p.Trp173Cys

(Figure 1). This variant is associated to a very low experimental ΔΔG

value of −9.5 kcal/mol. As stated during the official assessment, the

protein variant p.Trp173Cys corresponds to a clear unfolded state of

the protein as experimentally determined (Petrosino et al., 2019;

Savojardo et al., 2019). For this reason, the data providers assigned

TABLE 1 Regression and classification performances of INPS‐3D on the Frataxin challenge

Methods

Regressiona Classificationa

ρ rs τ RMSE MAE SEN SPE PPV NPV ACC MCC F1

INPS‐3D 0.71 0.62 0.43 3.05 2.24 0.6 1.0 1.0 0.6 0.75 0.6 0.75

Abbreviations: ACC, accuracy; INPS, impact of nonsynonymous mutations on protein stability; MAE, mean absolute error; MCC, Matthews correlation

coefficient; NPV, negative predictive values; PPV, positive predictive value; RMSE, root mean square error; SEN, sensitivity; SPE, specificity.
aFor scoring indexes definition see the scoring the predictions paragraph in Section 2.
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to the variant an arbitrary ΔG of 0 kcal/mol and, as a consequence, a

very low ΔΔG value. Removing the outlier from the evaluation, RMSE

and MAE decrease down to 1.64 and 1.48 kcal/mol, respectively.

These values are much lower than the ones reported in Table 1 and

closer to performances reported by INPS‐3D in other benchmarks

(Savojardo et al., 2016).

Overall, we can conclude that the performance of INPS‐3D in the

challenge is similar to the one already described in previous papers

when predicting experimentally determined ΔΔG values, as expected,

given that our method was trained on the same type of data

(Savojardo et al., 2016).

INPS‐3D predictions for FXN SAVs are reported in Table S1.

3.1.2 | TPMT‐PTEN challenge results

For the TPMT‐PTEN challenge, a set of SAVs of human thiopurine

S‐methyltransferase (TPMT) and phosphatase and tensin homolog

(PTEN) were provided to participants. The task was to compute the

effect of each SAV on protein stability (i.e., a numeric score > 0),

representing relative stability with respect to wild type (see Section 2

for details). During challenge evaluation, after excluding SAVs with

negative experimental scores as well as stop‐gain variants, assessors

retained 7,473 SAVs, 3,860, and 3,613 on PTEN and TPMT,

respectively. This data set was predicted adopting a combined

approach based on INPS and INPS‐3D (the method used for our

official submission) as well as on the perturbation probability index

(Pp). Table 2 lists results of the regression analysis. Since Pp is only

defined for 141 SAV types, we were able to provide predictions for a

subset of 2,982 out of 7,473 SAVs in the data set (1,556 from PTEN

and 1,426 from TPMT). In Figure 2 results obtained with INPS + INPS‐

3D are shown adopting a scatter plot between experimental and

predicted stability scores.

When comparing the two approaches, it appears that INPS +

INPS‐3D (based on machine learning) outperforms Pp, which is a

simple statistical approach. ΔΔG predictions obtained with INPS +

INPS‐3D (which were rescaled linearly in the required range)

significantly correlate with experimental values, achieving, on the

whole data set of SAVs, Pearson’s and Spearman’s correlation

coefficients of 0.44 and 0.39, respectively.

Our strategies show different performances on the two proteins,

with correlations that are lower for TPTM and higher for PTEN.

Overall, our INPS + INPS‐3D submissions are in the top 50% among

challenge participants as highlighted in the assessment.

Comparing results of Frataxin and TPMT‐PTEN challenges, it is

worth noting that, using the same prediction approach, we achieved

very different levels of performance (cf. correlation coefficients in

Tables 1 and 2). Moreover, prediction performance of INPS and

INPS‐3D in TPMT‐PTEN are far below those previously achieved with

the same methods in several benchmark datasets (Fariselli et al.,

2015; Savojardo et al., 2016). A possible interpretation of the results

is that when the methods are adopted to predict experimental

thermodynamic stability data (ΔΔG), they perform better since they

have been trained on the same type of data. As soon as the data type

differs (for TPMT‐PTEN, the impact of SAVs on protein stability was

measured using a large‐scale multiplexed VSP assay), the perfor-

mance decreases.

Predictions for TPMT‐PTEN SAVs are reported in Table S2.

3.2 | Prediction of SAV pathogenicity: CHEK2
challenge

For the CHEK2 challenge participants were asked to provide

predictions of pathogenicity for 34 SAVs of the human checkpoint

kinase 2 (CHEK2). Here, we evaluated performances of methods

F IGURE 1 Predicted vs experimental ΔΔG values for the eight
variants of the human frataxin protein (FXN). Predictions were

obtained using INPS‐3D

TABLE 2 Prediction performances of INPS + INPS‐3D and Pp on

the TPMT‐PTEN challenge

Methods Data set ρ rs τ

INPS + INPS‐3D PTEN 0.50 0.44 0.30

INPS + INPS‐3D TPMT 0.39 0.37 0.25

INPS + INPS‐3D TPMT + PTEN 0.44 0.39 0.27

Pp PTEN* 0.18 0.16 0.11

Pp TPMT** 0.17 0.16 0.11

Pp TPMT + PTEN*** 0.18 0.16 0.11

Abbreviations: INPS, impact of nonsynonymous mutations on protein

stability; PTEN, phosphatase and tensin homolog; TPMT, thiopurine

S‐methyltransferase.
*Predictions obtained on the subset of 1,556 PTEN SAVs for which Pp is

defined.
**Predictions obtained on the subset of 1,426 TPMT SAVs for which Pp is

defined.
***Predictions obtained on the subset of 2,982 PTEN + TPMT SAVs for

which Pp is defined.

SAVOJARDO ET AL. | 5



devised to predict the relation of SAVs with diseases, such as Pd and

SNPs&GO, as well as methods devised to predict impact of SAVs on

protein stability like Pp and INPS. Outputs of all methods were

rescaled so as to provide a numerical value, referred to as pcase, which

represents the probability of each SAV to be pathogenic (see Section

2 for details). Binary classification of SAVs in the data set was

obtained by applying a threshold on the pcase value. Table 3 lists the

results obtained with pcase threshold set to 0.75.

Among the different approaches evaluated, SNPs&GO is the best‐
performing one, reporting an MCC value of 0.54. The pattern of

mispredictions of SNPs&GO in this challenge is very similar to what

already assessed for the predictor in much larger datasets (Calabrese

et al., 2009). As a rule of thumb, SNPs&GO tends to more precise

than sensitive (i.e., it is characterized by a high PPV and a lower

sensitivity). The same behavior can be observed in the CHEK2

challenge, where SEN and PPVs are 0.71 and 0.88, respectively.

During the official challenge assessment, SNPs&GO was scored as

the top‐performing method.

Comparing performances of the different methods, it is evident

that those that directly predict SAV pathogenicity (SNPs&GO and Pd)

tend to outperform those that are instead devised to predict impact

of SAV on protein stability (INPS and Pp). This suggests that methods

implemented for predicting impact of SAVs on thermodynamic

stability can be helpful in assessing SAV pathogenicity but, in many

cases, they are not sufficient for obtaining accurate predictions.

Predictions for CHEK2 SAVs are reported in Table S3.

3.3 | Complex prediction challenges: PCM1 and
GAA

3.3.1 | PCM1 challenge results

The PCM1 challenge required to classify a set of 38 SAVs of the

pericentriolar material 1 (PCM1) gene into three different classes

(pathogenic, hypomorphic, and benign) according to the estimated

impact on brain development as measured on a zebrafish model.

Following the same approach adopted during the challenge assess-

ment, predictions were scored using a binary classification scheme,

which collects into a single class pathogenic and hypomorphic SAVs

and evaluates the ability of methods in discriminating them from

benign SAVs.

In Table 4, we report classification results obtained in this task

with Pd, Pp, and INPS.

Results highlight that all methods evaluated are essentially failing

in this challenge, reporting MCC scores that are close to randomness

and, in some case, even negative. Interestingly, our official submission

for this challenge (the one based on Pd), scoring with an MCC of

−0.25, was globally ranked as the third top‐performing among all

participating methods (global ranks were computed averaging

individual ranks computed for each scoring index). Our conclusion

(a) (b) (c)

F IGURE 2 Predicted vs experimental stability scores for the 7,473 variants of human TPMT (3,613 variants) and PTEN (3,860 variants).

Predictions obtained with INPS + INPS‐3D are shown individually for PTEN (a) and TPMT (b) variants and for the whole data set (c). INPS, impact
of nonsynonymous mutations on protein stability; PTEN, phosphatase and tensin homolog; TPMT, thiopurine S‐methyltransferase

TABLE 3 Comparison of Pd, SNPs&GO, Pp, and INPS on the

CHEK2 challenge

Methods SEN SPE PPV
NP-
V

AC-
C MCC F1

Pd 0.52 0.69 0.73 0.47 0.59 0.21 0.61

SNPs&GO 0.71 0.85 0.88 0.65 0.76 0.54 0.79

Pp 0.19 0.77 0.57 0.37 0.41 −0.05 0.29

INPS 0.52 0.69 0.73 0.47 0.59 0.21 0.61

Abbreviations: ACC, accuracy; GO, Gene Ontology; INPS, impact of

nonsynonymous mutations on protein stability; MCC, Matthews

correlation coefficient; NPV, negative predictive values; PPV, positive

predictive value; SEN, sensitivity; SNP, single nucleotide polymorphism;

SPE, specificity.

Note: Classification scoring indexes were computed setting pcase threshold

to 0.75 for identifying pathogenic variants.

TABLE 4 Prediction performances of Pd, Pp, and INPS on the
PCM1 challenge

Methods SEN SPE PPV NPV ACC MCC F1

Pd 0.86 0.00 0.54 0.00 0.50 ‐0.25 0.67

Pp 0.82 0.31 0.62 0.56 0.61 0.15 0.71

INPS 0.64 0.50 0.64 0.50 0.58 0.14 0.64

Abbreviations: ACC, accuracy; INPS, impact of nonsynonymous mutations

on protein stability; MCC, Matthews correlation coefficient; NPV,

negative predictive values; PPV, positive predictive value; SEN, sensitiv-

ity; SPE, specificity.
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would be that our predictors are not suited to capture the complexity

of the biological process leading to the different results.

Predictions for PCM1 SAVs are reported in Table S4.

3.3.2 | GAA challenge results

The GAA challenge requires to predict the impact on enzymatic

activity of 356 SAVs of the human acid α‐glucosidase (GAA) protein.

In this task, we compared Pd, SNPs&GO, Pp, and INPS. Results of

regression analyses are reported in Figure 3 and Table 5.

In our tests, pathogenicity predictors (Pd and SNPs&GO)

significantly outperform stability ones (Pp and INPS). However, our

submission (based on SNPs&GO), is characterized by a Pearson’s

correlation value of 0.28 and interestingly ranked among the top‐
scoring ones (the fourth in terms of individual submissions and the

second in terms of research groups). Our interpretation is that again

the complexity of the detection system hampers direct predictions

that can be addressed by our tools.

Predictions for GAA SAVs are reported in Table S4.

4 | CONCLUSION

In this paper we summarized our experience as participants to

the fifth edition of CAGI. In particular, we focused on five

different challenges which for sake of simplicity, we divided into

three different categories: (a) prediction of protein stability

perturbation upon variation, (b) prediction of variant pathogeni-

city, and (c) prediction of complex functional effects. For each

challenge, we analyzed the prediction performance of our CAGI

official submissions as well as performance of other complement-

ing approaches.

Overall, results on the five challenges here considered

confirming the superiority of machine‐learning based approaches

(SNPs&GO and INPS/INPS‐3D) over methods based on basic

statistical analyses (Pd and Pp). Our methods perform well when

the test set contains data homogeneous to those of the training

set. As an example, when predicting SAV effects on protein

stability, our methods perform better in the case of Frataxin than

in the case of TPMT‐PTEN. Indeed, these latter ΔΔG values of

TPMT‐PTEN variations are not directly measured, as in the case of

Frataxin, rather indirectly evaluated from a large‐scale multiplexed

VSP assay (Yen et al., 2008). Again, when predicting variant

pathogenicity of CHEK2, our SNPs&GO is satisfactory performing,

given the similarity between the training procedure and the

required task. However, when predicting on what we call complex

prediction challenges (such as the pathogenicity of PCM1 and GAA

variants) even machine‐learning approaches fail. Our tools are

indeed able to capture the binary classification of simple sets of

molecular data directly annotated (Calabrese et al., 2009; Casadio

et al., 2011). When classification is derived indirectly with in vivo

approaches, possibly it implies complex biological processes, which

deserve other models for their simulation.
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TABLE 5 Comparison of prediction performances of Pd,
SNPs&GO, Pp, and INPS on the GAA challenge

Methods ρ rs τ RMSE MAE

Pd 0.17 0.18 0.12 0.36 0.30

SNPs&GO 0.28 0.28 0.19 0.42 0.35

Pp 0.10 0.09 0.06 0.37 0.32

INPS 0.16 0.14 0.09 0.97 0.80

Abbreviations: GO, Gene Ontology; INPS, impact of nonsynonymous

mutations on protein stability; MAE, mean absolute error; RMSE, root

mean square error; SNP, single nucleotide polymorphism.
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