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Supplementary Methods 
 

1. The benchmark dataset 
 
The dataset of single nucleotide variants (SNVs) used to compare the different methods was 
extracted from ClinVar (Landrum, et al., 2016) (http://www.ncbi.nlm.nih.gov/clinvar/) 
annotated with hg19. The SNVs were filtered by selecting only the ones with either Pathogenic 
or Benign annotation that are present in two recent versions of ClinVar (December 2018 and 
June 2019) and have not been included in PhD-SNPg training sets. After the filtering 
procedure, we ended up with a set of 2,607 Pathogenic and 1,033 Benign SNVs. For testing 
purposes, the final set is composed of all the Benign SNVs and an equal number of randomly  
selected Pathogenic variants. The composition of the dataset is reported in Table S1.  
 

2. Calibration techniques and plot 
 
In this study, we considered two different calibration technique based either on isotonic or 
sigmoid mapping functions (Niculescu-Mizil and Caruana, 2005). The latter mapping 
procedure is more effective when the distortion in the predicted probabilities is sigmoid-
shaped. The isotonic calibration is extremely powerful, but it is prone to overfitting if the training 
dataset is not sufficiently large. To plot the calibration curves of each method, we partitioned 
our dataset with either a uniform or quantile strategy. The quantile-based approach was shown 
to be more robust than the uniform one. More information about the calibration procedures 
and plots are described in Supplementary Materials. 
 

3. Overview of the prediction methods 
 
In this study, we considered the following six predictors: 
• CADD (Kircher, et al., 2014) is an integrative annotation built on more than 60 genomic 

features, and it can score human single nucleotide variants and short insertion and 
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deletions anywhere in the reference assembly. For improved interpretability, the scores 
are transformed into a PHRED-like rank score. CADD training data consist of 16 million 
observed variants and 49 million simulated variants. It can annotate both coding and non-
coding variants. 

• DANN (Quang, et al., 2015) uses the same feature set and training data of CADD to train 
a deep neural network (DNN). Its output is a probability and predicts both coding and non-
coding variants. 

• DeepSea (Zhou and Troyanskaya, 2015) has been developed to predict only the effect of 
non-coding variants. It directly learns a regulatory sequence-code from large-scale 
chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations 
with single-nucleotide sensitivity. The predictor was trained on a diverse compendium of 
genome-wide chromatin profiles from the Encyclopedia of DNA Elements (ENCODE) and 
Roadmap Epigenomics projects. It returns the functional significance score for each 
variant. 

• Eigen (Ionita-Laza, et al., 2016) is an unsupervised approach and is not based on any 
labelled training data. It uses a variety of functional annotations in both coding and non-
coding regions (such as made available by the ENCODE and Roadmap Epigenomics 
projects) and combines them into one single measure of functional importance. Eigen 
does not provide the scores for the variants on the X and Y chromosomes. 

• FATHMM-MKL (Shihab, et al., 2015) integrates functional annotations from ENCODE with 
nucleotide-based sequence conservation measures. It is trained on two distinct datasets: 
the Human Gene Mutation Database (Stenson, et al., 2003) and the 1000 Genomes 
Project (1000 Genomes Project Consortium, et al., 2012). It can be used both on coding 
and non-coding variants and it provides a probability. 

• PhD-SNPg (Capriotti and Fariselli, 2017) is a classifier based on a limited amount of 
sequence information and on conservation scores. It is trained on the ClinVar dataset and 
can classify both coding and non-coding variants. The output of this method is a 
probabilistic score.  

 

4. How to plot the calibration curve  
 

The function to plot the calibration curve can be found in the python library scikit-learn 
(Pedregosa, F. et al., 2011) (see: https://bit.ly/31TwQbr to understand its parameters).  

It follows this procedure: 
● Take the binary label and its predicted probability given by the model; 
● Sort the data using the probability given; 
● Create bins in two possible ways:  

i) Uniform: divide the interval [0,1] into subsets of fixed length, and consider each 
subset as a bin (note that these bins might have a very different number of 
elements); 

ii) Quantile: divide the range of probabilities [0,1] into quantiles and consider each   
subset as a bin;   

● Calculate the fraction of positive labels in each bin and the average of the probabilities and 
plot them, using the average probabilities on the x-axis and the fraction on the y-axis. 

 



3 

5. Calibration of the classifiers 
 
In Fig. S1, S2 and S7 we report the calibration curves of the methods using the uniform 
strategy (as one can see, they are quite unstable); the calibration curves with the quantile 
strategy are in Figs. S3-S6. In Fig. S1 and S3 we compared the calibration of the classifiers 
that have a probability as output, without modifying the scores in any way (we assumed that 
probabilities should have intrinsic meaning); in Fig. S2 and S4 we compared the calibrated 
scores of Eigen and CADD after an isotonic calibration; while in Fig. S6 and S7 we performed 
a sigmoid calibration. 
We plotted the calibration curves separately on coding, non-coding and all the variants to see 
how they behave differently depending on the strength of the conservation signal (coding 
variants have a stronger conservation signal). Before plotting the calibration curves in Fig. S5, 
we applied the isotonic calibration to the raw scores of Eigen and CADD training the calibration 
with 10-fold cross-validation, which means that we divided the dataset into 10 subsets, fit the 
calibration on 9 of these subsets and transformed the scores of the 10th subset. This operation 
was repeated 10 times so that every variant had its score transformed without overfitting and 
the transformed scores were assembled all together to plot the calibration curve. 
We also investigated the effect of the isotonic regression (cv10) on all the classifiers: the 
calibrations improved greatly both on coding and non-coding variants (the effects are reported 
in Fig. S14-S19). Whenever possible (datasets bigger than 1000 elements), we suggest using 
this type of calibration.
 

6. Techniques for calibrating the probabilities 
 
Prediction probabilities are calibrated using the following techniques: 
 
● Sigmoid/ Platt’s: The mapping function is a sigmoid with parameters to be determined. 

The function is defined as: 𝑃!	 =
#

#$%!"#$%
, where 𝑓! = 𝑓(𝑥!)	is the output of the model given 

𝑥!, 𝑃! = ℙ(𝑥!) is the probability of the data point 𝑥! after the calibration and 𝐴 and 𝐵 are 
parameters to be learned. Platt Scaling is most effective when the distortion in the 
predicted probabilities is sigmoid-shaped; 
 

● Isotonic Regression: This method is more general since the only restriction is that the 
mapping function is isotonic (monotonically increasing). That is: 𝑦! 	= 	𝑚(𝑓!) 	+ 𝜖! , given 
the predictions 𝑓! and the true targets 𝑦!, where 𝑚 is an isotonic function. The problem is 
finding the isotonic function such that 𝑚	 = 	𝑎𝑟𝑔𝑚𝑖𝑛&	∑(𝑦! − 𝑧(𝑓!))'. This calibration is a 
more powerful calibration method that can correct any monotonic distortion but is more 
prone to overfitting when data is scarce (and thus performs worse than Platt Scaling in that 
situation).  

 

7. Brier score 
 

The Brier score is defined as:  

𝐵𝑆	 = 	 #
(
	∑ (𝑓!	 −	𝑜!)'(

!)# ,  
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where 𝑖 is an item in a set of 𝑁 predictions, 𝑓! is the predicted probability of the element 𝑖 and 𝑜! is 
the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the 
predictions are calibrated. It takes on a value between zero and one since it is the same range in which 
the probabilities and the labels vary. This score is appropriate for binary, categorical outcomes, but 
can not be used for ordinal variables or for cases with three or more classes. 

 

 

8. Calculation of the receiver operating characteristic curve 
 

In all the performance measures - assuming that positives indicate Pathogenic and negatives 
indicate Benign - TP (true positives) are correctly predicted Pathogenic Single Nucleotide 
Variants (SNVs), TN (true negatives) are correctly predicted Benign variants, FP (false positives) 
are Benign SNVs annotated as Pathogenic, and FN (false negatives) are Pathogenic variants 
predicted to be Benign.  
The area under the receiver operating characteristic (ROC) curve (AUC), is obtained by plotting 
the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) at different probability 
thresholds of annotating a variant as Pathogenic or Benign.  
  
   𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	   

𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 
 
 

9. Simulated data 
 

We wanted to further explore the effect and the power that the calibration had on the scores and 
how and when they could actually be calibrated using the sigmoid function and the isotonic 
calibration. We asked ourselves if there were distributions of the scores that could not be 
influenced by the calibration and how effective would the standard calibration be. Thus, we 
simulated different types of distributions, calibrated the scores on the training set and then tested 
the different calibrations on a separated set. In the Figures S8, S10, S11, it is possible to see how 
the calibration process would work in the case of a perfect classifier (Fig. S8), when handling a 
very polarized distribution with quite a few errors near the endpoints (Fig. S10) and when treating 
an almost-random classifier (Fig. S11). In Figure S9 we show how a model could be almost perfectly 
calibrated without necessarily being a perfect classifier (therefore, we want to emphasize the 
importance of controlling the AUC before going on with further inquiries). 
 
 

10. Performance of the methods 
 

In Table S2 we report the AUCs values for each method on coding and non-coding variants. Note 
that DeepSea was not constructed to work on coding variants. CADD is the best performing 
classifier on both coding and non-coding variants, with PhD-SNPg as a close second. 
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11. Calibration scores 
 

Not all classifiers we studied provide well-calibrated probabilities. Here, we wanted to show the 
distribution of the scores/probabilities of the six algorithms to have a better understanding of their 
ill-calibration. As shown in the Fig. S12 and S13, the scores of the benign variants tend to be 
widespread from zero to one, while the scores of the pathogenic tend to be consistently close to 
one and this reflects badly on the calibrations. The developers of the algorithms should check the 
distributions of the outcomes while working on them, to obtain better-calibrated models.  
 
 

12. Calibration of Eigen and CADD with a sigmoid function 
 
We also tried to calibrate the scores of Eigen and CADD using a sigmoid function   
 

𝑓(𝑥) 	= 	 !
!"#!"#$

  
 

The parameter B was chosen using the threshold the maximized the Matthews Correlation Coefficient 
(MCC), a measure of the quality of binary classifications. We transformed and calibrated CADD's 
scores with the coefficient 𝐵	 = 	2.5 that was the threshold for the best classification on both coding 
and non-coding variants. We calibrated the scores from Eigen separately on coding and non-coding 
SNVs since it provides two different sets of scores. We use 𝐵	 = 	0.05 for the coding variants and 
𝐵	 = 	1.63 for the non-coding variants. After this transformation, CADD showed a good level of 
calibration, while Eigen still performed very poorly. The calibrations of Eigen and CADD with this 
procedure are shown in Fig.S6 and S7 (uniform and quantile).  
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Supplementary Tables 
 
 

Table S1. Composition of the dataset used for testing the methods 
 

Variant Type Pathogenic Benign 

Non-Coding 228 476 

Synonymous 9 364 

Missense 796 193 

Total 1,033 1,033 

 
 
 
Table S2. Performance of the methods on the testing dataset. 
 

Method AUC Coding AUC Non-Coding AUC All 

PhD-SNPg 0.93 0.98  0.96 

DANN 0.91 0.97 0.94 

CADD 0.98 0.98 0.98 

FATHMM          0.85 0.98 0.90 

DeepSea  − 0.94   − 

Eigen 0.93 0.82 0.96 

 
AUC: Area Under the Receiving Operating Characteristic Curve. 
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Supplementary Figures 
 
 

 
Figure S1. Calibration curves of the predictors that output a probability using the "uniform" strategy to plot the 
curves. 

 
 

 
Figure S2.  Calibration curves of the predictors that output a raw score using the "uniform" strategy to plot the 
curves. The scores were calibrated with the isotonic technique. 

 

Figure S3. Calibration curves of the predictors that output a probability using the "quantile" strategy to plot the 
curves. 
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Fig. S4.  Calibration curves of the predictors on coding and non-coding variants after isotonic calibration 
of their outputs. 

 
 

 
Figure S5.  Calibration curves of the predictors that output a raw score using the "quantile" strategy to plot the 
curves. The scores were calibrated with an isotonic calibration. 

 
 

 

 
Figure S6.  Calibration curves of the predictors that output a raw score using the "quantile" strategy to plot the 
curves. The scores were calibrated with a sigmoid calibration. 
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Figure S7.  Calibration curves of the predictors that output a raw score using the "uniform" strategy to plot the 
curves. The scores were calibrated with a sigmoid calibration ( %

%&'!"#$%
). The best parameters were: A=1, B=2.5 

for CADD and A=1, B=1.63/0.05 for Eigen. 
 
 

 
Figure S8.  Simulated data: Perfect classifier, easy to calibrate both with isotonic and sigmoid techniques. 
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Figure S9.  Simulated data: here is an example of a perfectly calibrated method that is not a perfect classier. 

 

 
 

Figure S10. Simulated data: a harder situation to calibrate, that can be solved with the isotonic calibration. 
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Figure S11.  Simulated data: Random Classier. 
 

 

Figure S12.  Distributions of the scores of the coding variants. 
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Figure S13.  Distribution of the scores of the non-coding variants. 
 
 

 
 
 

 
Figure S14. Calibration curves of PhD-SNPg after isotonic calibration. 
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Figure S15.  Calibration curves of FATHMM after isotonic calibration.  
 

 
Figure S16. Calibration curves of Eigen after isotonic calibration.  
 
 

 
Figure S17.  Calibration curve of DeepSea for non-coding variants after isotonic calibration.  
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Figure S18.  Calibration curves of DANN after isotonic calibration.  
 
 

 
 
Figure S19.  Calibration curves of CADD after isotonic calibration.  
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