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A diffusion-collision-like model is proposed for helical proteins with three-state folding dynamics. The model
generalizes a previous scheme based on the dynamics of putatively essential parts of the protein (foldons)
that was successfully tested on proteins with two-state folding. We show that the extended model, unlike the
original one, allows satisfactory calculation of the folding rate and reconstruction of the salient steps of the
folding pathway of two proteins with three-state folding (Im7 and p16). The dramatic reduction of variables
achieved by focusing on the foldons makes our model a good candidate for a minimal description of the
folding process also for three-state folders. Finally, the applicability of the foldon diffusion-collision model
to two-state and three-state folders suggests that different folding mechanisms are amenable to conceptually
homogeneous descriptions. The implications for a unification of the variety of folding theories so far proposed
for helical proteins are discussed in the final discussion.

I. Introduction

Investigations aimed at elucidating the complex features of
protein folding have first addressed the calculation or prediction
of statical features (essentially, native protein structures1,2). This
has been depicted as the decipherment of the second half of
the genetic code1 and recently provides the underpinning of the
structural genomics project.3 However, in the past few years
increasing evidence has accumulated as to the importance of
the dyamical events preceding the stabilization of the native
structure. For it has become clear that the process of folding is
involved in a delicate regulatory network where perturbations
in the timing of parallel events is critical for the correct
functioning of the cell or the manifestation of well-known
pathologies.4-6 Moreover, detailed knowledge of the mech-
anisms underlying the folding of proteins affords guiding
principles also in the rational design of proteins.7 Correspond-
ingly, the focus of research on protein folding has shifted from
the study of protein structure to the kinetics and dynamics of
the folding process.2,8-10 However, as of yet, protein folding
poses a formidable problem since simulating or monitoring the
entire gamut of events that constitute the process is within reach
of the available technology only for small peptides.11

Much of the inherent complexity of the folding process comes
from the frustrated character of proteins.10 Frustration is the
impossibility of optimizing simultaneously the numerous inter-
actions that are dictated on each residue by the native structure
of the protein. This feature is responsible for the ruggedness of
the underlying energy landscape, which slows down the search
for the energy minimum.

A way out of this dead end has emerged since it has been
recognized that the undesirable effects of frustration can be

partially overcome by a suitable interplay of entropic and energy
factors. The key ingredient is the minimal frustration require-
ment10 which results in a funnel-shaped landscape that reduces
to the right order of magnitude the otherwise astronomical
folding times of proteins (Levinthal’s paradox).9,12 Relevant to
the present paper is the interpretation of the minimal frustration
requirement in helical proteins that was provided in ref 13. This
leads to the hypothesis of the existence of regions of the
sequence comprising contiguous residues with helical structure,
where there is minimal conflict between the constraints imposed
by global and local interactions. We refer to these segments as
the foldons. This term is not new in the literature14-16 and its
use in this framework was justified in ref 17. In ref 13 we have
illustrated a method to detect the minimally frustrated segments
with native helical structure directly from sequence.

The comparison with experimental data carried out in ref 13
suggests that the foldons are likely to correspond to the initiation
sites of folding where marginally stable elements of secondary
structure (IS helices) are formed as the precursors of the native
foldon-containingR-helices. This is an important refinement of
the assumption, customary in diffusion-collision models,26 that
intrahelical processes are more rapid than the rate-limiting step
of folding. We have also argued13,17that IS helices are stabilized
predominantly by local (or short-range) interactions, i.e., interac-
tions that occur between residues that occupy close positions
in sequence. This implies that, upon being formed, they are in
a position to induce concomitant reduction of energy and entropy
as required by the funnel theory of protein folding.9,10 Finally,
it has been pointed out that the influence of foldons and the IS
helices on the folding dynamics extends to longer time scales
as they are the building blocks that determine the entire folding
dynamics.17 Evidence for this comes from the foldon diffusion-
collision model (henceforth, FDC model), which was applied
to small two-state helical proteins in ref 17. The FDC model
(see Methods and Theory) provides a quantitative description
of folding and is related to the diffusion-collision (DC) model
that implements the hierarchical view of protein folding.18-20
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This paper addresses the paradox arising from the fact that
although applicability of hierarchical pictures to three-state
folders has been advocated in a recent discussion,23 and despite
the successful application of the FDC model to two-state
folders,17 we have ascertained (see Table 5) that the FDC model
grossly fails when applied to proteins Im7 and p16 with three-
state folding.33,42-44 To settle this issue we introduce the FDC3
model as an extension of the FDC model17 and then show that
the FDC3 scheme successully rationalizes the experimental data
for Im7 and p16. The plan of the paper is the following. In the
Methods and Theory section we illustrate the new features
introduced in the FDC3 model to account for the complexity
of three-state proteins. In section III we present the results
obtained by applying the FDC3 model to three-state proteins
Im7 and p16. The refined description of the folding process
provided by the FDC3 model is also tested on the two-state
proteinλ-repressor. In section IV we compare the effectiveness
of both dynamical schemes (FDC and FDC3) on two-state and
three-state folders and discuss the physical grounds for their
complementarity. In the concluding section we discuss the
implications of our results for the general theory of folding.

II. Methods and Theory
The general procedures adopted in this paper to study the

folding process consist of the FDC model17 and its generalization
devised in the present section (FDC3 method) to better account
for the increased complexity of three-state folding dynamics.
Before illustrating the details of both models it is convenient
to summarize the common architecture of these two computa-
tional schemes. To keep the analysis as simple as possible, it
suffices to refer to proteins with three IS helices. The essential
steps of the FDC and FDC3 folding models are the following:
(a) use of a neural network-based predictor to infer the secondary
structure from the protein sequence; (b) construction of the
information entropy plot starting from the output of the neural
network; (c) detection of the foldons from the entropy plot
according to the minimal entropy criterion; (d) calculation of
the folding probability of the attendant IS helices; (e) calculation
of the folding probabilities of aggregates with two IS helices;
(f) calculation of the folding time via the diffusion-collision
dynamics of the IS helices as described in ref 17; and (g)
description of possible paths through the intermediate states
allowed by the coalescence mechanism that is inherent in the
FDC/FDC3 models. State numeration follows the diagram of
Figure 1. The FDC and FDC3 procedures differ as far as step
(e) is concerned.

The search for the foldons is based on a feed-forward neural
network that is used to predict the secondary structure of helical
proteins. We adopt the simplest partition of the space of
structures intoR and non-R structures. The specifics of the
neural network used in this paper are as described in ref 17.
The neural network is trained with the error back-propagation
algorithm on a database comprising 822 proteins from the PDB.
We process the outputs of the neural network to find the position
of the foldons and to estimate the probabilities of formation of
the corresponding IS helices. This can be done by exploiting
the information entropy profile13 associated with each protein
sequence (Figures 3, 6, and 8).

The fundamental principle is the minimal entropy criterion
that was stated in ref 13. Basically, two requisites must be met
for a prospective foldon: it must possess both a below threshold
entropy minimum and anR-helical native structure. The entropy
threshold is defined in ref 40.

The FDC model envisages the early formation of marginally
stable protostructures (the IS helices) that undergo thermally

activated diffusional motions and binary collisions. The subse-
quent coagulation of the IS helices leads to the progressive for-
mation of clusters (microdomains) of increasing rank. The rank
is the number of IS helices composing the microdomain. The
birth of a new microdomain at the expense of the older ones
with smaller rank hallmarks the transition to a new state along
the folding pathway. In a protein with three IS helices the states
and the possible pathways are illustrated in Figure 1. Once all
the microdomains participate in the globular cluster with the
highest possible order, the folding is considered to be complete.

The brownian motion of the coupled microdomains is
described by the stochastic part of the FDC model that relies
on the classical DC theory.24-28,41 The elementary event is the
encounter of two microdomains. The characteristic timeτij for
coalescence of the colliding microdomains (labeledi andj) can
be evaluated as

In eq 1,A is the sum of the areas of the colliding microdomains.
In the spherical approximation27,28,41each pair of microdomains
are ascribed the radiiRi andRj. van der Waals volumes of the
helices have been computed by means of TINKER. The radii
of the microdomains are evaluated as in ref 27.D is the relative
diffusion coefficient defined asD ) kBT(Ri

-1 + Rj
-1)/6πη,

whereη is the viscosity. The temperatureT was set to 298 K
and the factorkBT/6πη was given the value 328.24 Å2/ns. G
andL are defined as

G andL depend on the geometric parametersRmin ) Ri + Rj,
Rmax ) Rmin + linker length and onR ) (Dτc)-1/2, ε ) Rmin/
Rmax, andV ) 4π(Rmax

3 - Rmin
3 )/3. τc is the time constant for

the coil-helix transition. Collisions are effective when they result

Figure 1. State numbering for the folding process of a protein with
three IS helices A, B, and C. State 1 is the unfolded state, where the
microdomains of order 1, A, B, and C are completely uncoupled. State
8 represents the native state, where all the native interactions have been
established within the aggregate ABC of order 3. The intermediate states
correspond to the progressive coalescence of the microdomains. For
example, as indicated over the related arrow, passing from state 1 to
state 2 requires the aggregation of microdomains A and B (aggregate
of order 2). For the further transition to state 4 to occur, microdomain
C has to aggregate with A forming an aggregate of order 3. The
transitions that result in the establishment of the missing interactions
are referred to as internal transitions. By way of example, an internal
transition occurs between microdomains B and C on passing from state
4 to state 8. Similar internal transitions are involved on passing from
states 6 and 7 to state 8.

τij ) G
D

+
VL(1 - Pij

k+l)

ADPij
k+l

(1)

G ) -
Rmax

2 (5 - 9ε + 5ε
3 - ε

6)

15ε(1 - ε
3)

(2)

L-1 ) 1
Rmin

+ R
RRmax tanh[R(Rmax - Rmin)] - 1

RRmax - tanh[R(Rmax - Rmin)]
(3)
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in the aggregation of the collidingith and jth microdomains.
As far as coalescence is concerned one assumes that effective
collision occurs with probabilityPij

k+l. This implies that with
probability1 - Pij

k+l no aggregation takes place and the two
microdomains separate and start a new diffusional step. If the
microdomainsi and j have rankk and l, respectively, in case
an effective collision occurs the resulting more complex
microdomain has rankk + l. According to the standard DC
model27 we definePij

k+l as the product of the orientational (γi
k)

and folding (âi
k) probabilities of the individual microdomains,

i.e. Pij
k+l ) γi

k γj
l âi

k âj
l. For any microdomain or microdomain

clusterγi
k is related to the hydrophobic effect, i.e., to the solva-

tion free energy change of the microdomain. Estimates ofγi
k

usually result from computing the ratio of the accessible area
lost by the microdomain upon binding to the partner to the total
accessible area.27 The program DSSP provided the accessible
surfaces of the various helices as well as the surface that is lost
upon contact.

The FDC model departs from the DC model as far as the
choice of the microdomains and the evaluation of the folding
probabilitiesâi

k are concerned. The significant novelty of the
FDC model, with respect to the DC model, consists of
considering the IS helices (rather than the whole set of native
helices) as the critical elementary microdomains that participate
in the rate-limiting steps of the folding dynamics. The basic
idea of the FDC model is that the folding process can be
dissected in semi-independent events taking place in the IS
helices that subsequently dictate the kinetics of the whole folding
process. The physical rationale for this picture is the quite
general fact that proteins, like all complex systems, are
characterized by multiscale dynamics.21 The ensuing hierarchical
organization of folding allows us to split the overall dynamics
in local fast dynamics and global slow dynamics that are
governed respectively by short-range (intra-helical) interactions
and long-range (inter-helical) interactions. The fast dynamics
pertain to the nucleation and elongation processes of the IS
helices that, supposedly, settle very rapidly in a temporary
equilibrium state17 under the dominant influence of short-range
forces, consistent with the very definition of a foldon. The
regions of sequence that do not belong to the IS helices merely
constrain the relative motions of the IS helices. Eventually, one
arrives at a simplified description of the protein as a small
number of connected beads, each bead being an IS helix.22 The
slow dynamics describe the subsequent formation of the tertiary
structure via progressive aggregation of the IS helices. In the
later stages of folding, tertiary interactions contribute both to
the growth of the coagulated IS helices to their native size and
to the formation of the non-IS helices.

The FDC procedure to get estimates of the parametersâi
1

was introduced in ref 17. The calculation relies on the fact that
the entropy profile of the foldons provides information as to
the nucleation and elongation constants of the Zimm-Bragg
theory applied to the formation of the IS helices. In the FDC
model the values ofâi

k are biased as in the original DC model.
In particular we have chosenâi

k ) 1 for transitions withk > 1,
i.e., transitions involving multihelical aggregates.27,41 This is a
simple representation of the progressive stabilization of multi-
domains in the later steps of folding due to the increasing
momentum of the tertiary interactions.27,29The FDC dynamics
of the IS helices is successful in computing accurate estimates
of the folding times over quite a large range of times.17 However,
on addressing the investigation of more complex folding
processes the FDC model outlined above is no longer appropri-

ate, in that for the three-state folders Im7 and p16 we get
deviations of nearly an order of magnitude from the experi-
mental folding rates. Experimental and theoretical folding times
are compared in Table 5. We assume that the weak point of the
FDC model is the approximationâi

k ) 1 ∀ k > 1, which
overemphasizes the self-stabilization properties of higher rank
microdomains. Therefore we devise a new procedure for
evaluating theâi

k for aggregates of rankk g 2. The improved
FDC model is henceforth referred to as the FDC3 model. In
the cases examined in the present paper it suffices to consider
k ) 2. In ann-residue helix let us viewâi

1 ) p1p2...pn as the
product of the probabilities that each individual residue is in
the helical (i.e. folded) conformation. Each residue belonging
to the ith helix can be assigned an average folding probability
estimated by means of the following mean field approximation

As soon as theith helix interacts with another IS helix, we
distinguish among theR residues that are definitely stabilized
in their helical state from then - R that keep fluctuating
between the helical and the coil state. On computing the new
folding probabilityâh i

1 ) p′1p′2...p′n we assume that the stabilized
residues havep′k ) 1 whereas the fluctuating ones havep′k ) pj.
To decide a reasonable order of magnitude forR we consider
that the inter-helical interactions have a stabilizing effect
proportional to the relative lost surface (RLS) (ratio of the loss
in solvent accessible surface (∆SAS) to the total solvent
accessible surface (SAS)). We assume that the threshold value
for the surface loss,Lthreshfor all the residues to be fixed in the
helical state, corresponds to the actual loss as it results from
the native tertiary structure of the protein. We have takenLthresh

) 30% in the case of full alignment of the helices along their
axes, and lower values on increasing mutual orientation from
parallel to perpendicular (see, for instance, the values chosen
for Im7). ThusLthresh/n ) RLS/R, which implies that

where R is to be approximated to the nearest integer. In
conclusion, the folding probability to be associated with an IS
helix within a microdomain of rank 2 is

where R is estimated as in eq 5. Therefore, for the folding
probability of thekth microdomain of rank 2 composed of IS
helicesi and j we assume

whereâh i
1 andâh j

1 are computed according to eq 6.
The time evolution of the probabilities of the different states

Pi (i ) 1, 2, ..., 8) is ruled by a master equation in which the
transition probabilities per unit time are computed as (τij)-1.27

Following refs 17 and 27 we have simplified our simulations
by treating the aggregation reactions as if they were irreversible.
Accordingly, we have set equal to zero the transition prob-
abilities that describe the dissociation of any microdomain.
Calculations of the diffusion-collision processes were performed
with MATLAB. The folding time is the time required for the
probability of the native state to attain the value 0.6. The folding

pj ) nxâi
1 (4)

R ) RLS
n

Lthresh
(5)

âh i
1 ) pjn-R (6)

âk
2 ) âh i

1 âh j
1 (7)
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times of Table 5 correspond, for example, to the timeτFDC3 such
that P8(τFDC3) ) 0.6 in the graphs of Figures 4, 5, 7, and 9.

III. Results

A. The Folding of Im7. Im7 (PDB code, 1CEI) is an helical
immunity protein with four native helices33 (Figure 2a). The
secondary structure of 85 out of the 87 residues of 1CEI have
been resolved crystallographically. The entropy profile (Figure
3) was calculated following the procedure of ref 13 (see Methods
and Theory). According to the minimal entropy criterion13,40

only helices 1, 2, and 4 meet the requirements for being
considered IS helices. In the sequel we label them microdomains
A, B, and C, whereas ordinals are used to denote the native
helices. The location and size of foldons as predicted by the
neural network are shown in Figures 2a and 3. The relevant

parameters for the implementation of the FDC3 calculation are
gathered in Table 1.

Helix 3 (residues 52-55 of the PDB file) is not predicted by
the neural network (Figure 3). Accordingly, it is not subjected
to the minimal entropy criterion for the search of foldons and
the IS helices. This is a typical failure of the generalization
capability of the neural network that, due to the low entropy
value assigned by the neural network-based predictor (Figure
3), can be ascribed to the paucity of examples of the same type
in the database rather than to the noise affecting the sequence-
secondary structure mapping.32

As we shall see, misprediction of helix 3 has little effect on
the calculation of the folding time. Visual inspection of the
mutual orientations of the IS helices from the three-dimensional
structure of Figure 2a shows that helix B is approximately
parallel to helix C and angle(A,C)> angle(A,B). This suggests
Lthresh(B,C) ) 30%,Lthresh(A,C) ) 15%, andLthresh(A,B) ) 20%
(see Methods and Theory) to be used in eq 5. The geometrical
parameters needed to evaluate the folding time (eq 1) are
displayed in Table 1. For the characteristic timeτc in eq 3 we
chose the valueτc ) 1 ns, that lies in the usual range of values
used in the DC and FDC models.17,27,28

Valuable insight into the actual sequence of states traversed
by the protein during the folding process comes from the curves
of Figure 4, that displays the probabilities in time of the relevant
states, according to the FDC3 computation and, for comparison,
to the original FDC scheme.

As shown also in Table 5, the folding time estimated by the
FDC model is 0.77 ms, which is sensibly smaller than the
experimental time 3.06 ms,34 whereas the result obtained with
the FDC3 model,τFDC3 ) 2.98 ms, compares much better with
the experimental value. Notably, different values of the folding
time were reported in the literature (4.20 ms, using the kinetic
data of ref 33 and 3.36 ms with 0.4 M Na2SO4

34). It is evident
that the more realistic description of the interactions of micro-
domains of rank 2 has a visible effect on the overall kinetics of
the folding process of Im7.

In parallel, the lifetimes of states 2 and 4 increase on passing
from the FDC to the FDC3 scenario. More precisely, states 2
and 4 show slower decay in the FDC3 calculations and this
reflects the experimental observability of the intermediate state.33

States 2 and 4 seem to reach a temporary pseudoequilibrium
whereas their decline accompanies the rise of state 8. State 8
corresponds to the native state where the missing coupling of
microdomains B and C is eventually established. The putative
role of states 2 and 4 in the intermediate of folding indicates
that helices 1, 2, and 4 are mainly involved in the critical step
of the process. Our results are consistent with experimental
data33 indicating that the on-pathway intermediate of Im7
includes only the three IS helices detected by the neural network
(Figures 2a and 3). Also the mutation study carried out in ref
33 indicates that helix 3 is likely to participate in the helical
core of Im7 only after the aggregate composed of helices A, B,
and C has formed. This is in accord with the fact that helix 3
is not expected to belong in the set of the IS helices.

Next, in experimental works rapid preequilibrium is assumed
between the unfolded state and the intermediate state, followed
by slow relaxation to the native state. The curves of Figure 4
do show the same features.

B. The Folding of Im9. The kinetics of the 86 residues
protein Im 9 (PDB code, 1IMQ) also has been experimentally
characterized.34 It is commonly accepted that the folding
mechanism is conserved within the same family of proteins,36-39

but Im7 and Im9 seem to be an exception. As a matter of fact,

Figure 2. Three-dimensional crystallographic structures and foldons
of the two-state and three-state proteins examined in the present paper.
Foldons are labeled A, B, and C. (a) Structure of protein Im7. The
foldons within the appropriate IS helices are represented as black
stretches of native helices 1, 2, and 4. Helix 3 is not predicted by the
neural network. (b) Three-dimensional structure of protein p16. The
foldons within the appropriate IS helices are represented as black
stretches of native helices 2, 3, and 5. The foldon belonging to the
native helix 7 is not displayed since it plays a negligible role in the
folding dynamics. (c) Three-dimensional structure of theλ-repressor
protein. The foldons within the appropriate IS helices are represented
as black stretches of native helices 1, 4, and 5. These pictures were
obtained with RASTOP 2.0.3.

Figure 3. Entropy profiles of proteins Im7 (squares) and Im9
(diamonds) derived according to ref 13. Helical traits predicted by the
neural network are marked by the nonzero plateaus of the step function
superimposed on the entropy plot. Zero values indicate nonhelical
segments. Note that the short native helix 3 (residues 52-55, displayed
in Figure 2a) is not predicted by the neural network. Black bars mark
foldons A (13-19), B (35-36), and C (69-70) (see Table 1) belonging
respectively to native helices 1, 2, and 4. Despite moderate sequence
homology, the two curves are remarkably similar. For the sake of read-
ibility of the diagram predicted helical traits of Im9 are not shown. As
in the case of Im7 the native helix 3 (residues 52-55) is not predicted
by the neural network. Foldons A (15-20), B (36-38), and C (70-
71) of Im9, belonging respectively to native helices 1, 2, and 4, are
not marked since they considerably overlap with the foldons of Im7.
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Im9 is a two-state folder while Im7 has a three-state folding
dynamics. Therefore Im9 is a critical benchmark as it is
interesting to check whether the FDC and FDC3 models succeed
in perceiving such a difference in the folding process. In Figure
3 we have superimposed the entropy profiles of Im 7 and Im 9.
Despite moderate sequence homology (60%) the entropy plots

of Im7 and Im9 are strikingly similar. The foldons and the
helices of Im9 are almost coincident with those of Im7 (Figure
3 and Table 2) apart from modest differences within the regions
of foldons A and B that are the major ones responsible for the
modified kinetics of folding. The relevant parameters for
computing the folding probabilities of the microdomains and
eventually to evaluate the folding time (eq 1) are reported in
Table 2. In the FDC3 calculation we used the same timeτc and
the same thresholdsLthreshas for Im7, due to the similarity of
the tertiary structure of Im9 (not shown) to that of Im7 (Figure
2a).

The folding pathway of Im9 resembles closely that of Im7.
Similarly, states 2 and 4 are traversed with highest probability
(Figure 5). However, meaningful differences emerge as to the
behavior in time of the populations of these two states predicted
by the FDC and the FDC3 schemes. State 2 of Im9 preserves
approximately the same kinetics already calculated for Im7 save
for moderate changes in the maximal population. By contrast,
state 4 of Im9 is much less populated than state 4 of Im7 both
in the FDC and FDC3 calculations. Actually, state 2 of Im9 is
the only intermediate state to be significantly populated. As far
as the different trend predicted by the FDC and the FDC3
scenarios is concerned, state 2 grows approximately at the same
rate and attains more or less the same population according to
both calculations but decays more slowly according to the FDC3
method. On passing from the FDC to the FDC3 procedure state
4 of Im9 undergoes minor changes in amplitude and decay rate.
We claim that this finding is consistent with the absence of
experimentally detectable intermediates in the folding process
of Im9, albeit the intermediate 2 is visible in Figure 5. The
relationships between FDC/FDC3 aggregates (Figure 1) and the
intermediates studied by the experimentalists are clarified in
the Discussion.

C. The Folding of Protein p16.Proteinp16INK4a (p16 for
brevity, PDB code 1BI7) is a member of the INK4 family.42

Kinetic data have been reported recently.42-44 p16 has 154
residues and seven native helices43 (Figure 2b). The PDB file
covers the region from residue 10 to residue 134. The entropy
profile is drawn in Figure 6. The residue numbering used in
the present paper, being based on the PDB file, is shifted by 9
amino acids with respect to the numbering of the entire sequence

TABLE 1: Geometrical and Stability Parameters of Im7a

A B C A B C

l (Å) lAB ) 17.5 lBC ) 80.5 â1 0.062 0.036 0.019
∆n ∆nAB ) 5 ∆nBC ) 23 n 15 12 13
r (Å) 8.58 7.85 8.15 foldons 13-19 35-36 69-70
V (Å3) 1958 1501 1678 pj 0.831 0.758 0.737
SAS(Å2) 1745 1410 1681

A B C

∆SAS (RLS) R âh j
1 ∆SAS (RLS) R âh j

1 ∆SAS (RLS) R âh j
1

A 163 (9%) 7 0.227 235 (13%) 13 0.690
B 184 (14%) 8 0.330 15 (1%) 1 0.048
C 243 (15%) 12 0.737 15 (1%) 1 0.026

a Shown are the geometrical and stability parameters of microdomains A, B, and C (upper part) and features of the microdomains of rankk )
2 of Im7 (in matrix form in the lower part of the table).l represents the length of the linker joining microdomainsi and j (i, j ) A, B, C). ∆n is
the number of residues composing the linker of lengthl. Note thatl ) 3.5∆n, since each residue has the average length of 3.5 Å.r denotes the
radius of the individual microdomains.V is the volume of the microdomain at hand. SAS is the solvent accessible surface. The folding probabilities
âi

1 are estimated graphically from the entropy profile of Figure 3.n is the number of residues in the native helices. The scopes of the three foldons
are given specifying the numbers of the first and last residues of each of them.pj is the average probability per residue calculated as in eq 4. The
lower part of the table collects in matrix form the lost surface∆SAS, the relative lost surface (RLS) and the new folding probabilityâhk

1. The number
of native residues in each IS helix,R, is computed as in eq 5. The probabilitiesâh j

1 are calculated according to eq 6. The entries refer to helix Y (Y
) A, B, C, matrix row) after binding with helix X (X) A, B, C, matrix column). These values are then used to calculate the folding probability
âk

2 as in eq 7. IS helices B and C lose a small surface upon contact which we fix to 1%.

Figure 4. Behavior in time of the probabilities of the critical states of
protein Im7. Times are expressed in milliseconds. States with popula-
tions less than 0.01 are not shown. State 1 is the denatured state and
state 8 is the native state (Figure 1). In the intermediate states 2 and 4
only partial aggregation of the microdomains has occurred. In state 2
microdomains A and B have coalesced to form the precursor of the
observable intermediate state 4 in which A interacts simultaneously
with B and C. The curves of panel (a) are calculated by means of the
FDC3 model. For comparison we report in panel (b) also the curves
calculated by means of the FDC model. State 2 exhibits a detectable
population both in the FDC and in the FDC3 model but has a faster
decay in the FDC plot. Also state 4 becomes more visible in the FDC3
calculation due to its longer lifetime. Note the different time ranges on
the abscissas of panels (a) and (b). All the other possible intermediate
states play a negligible role. State 1 exhibits practically the same features
in the FDC and in the FDC3 calculations.
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(used for example in ref 44). Helices 2, 3, 5, and 7 are eligible
as IS helices. We surmise that helix 7 has a negligible role in
the folding dynamics due to the very small contact area with
the other three foldons. Therefore, consistent with the mech-
anism of diffusion-collision, we use only the IS helices hosted

within the native helices 2, 3, and 5 as the fundamental
determinants of the dynamics (a similar approximation was
made in the analysis of the villin headpiece subdomain30).

Interestingly, the relevance of our foldons in the rate-limiting
step of the process is confirmed by the estimates of theφ-values
in the transition state reported in ref 44. More specifically,
φ-values close to 1 are assigned to A21 and V86 (our
numbering) that fall at the end of foldons A and C (Table 3).
The furtherφ-value close to 1 assigned to A59 gives less precise
evidence since it falls a bit outside of foldon B. However, this
discrepancy may well be due to the noise that affects the entropy
plot and in particular the determination of the ends of the
predicted helices.32 Finally, residues V117 and A118 do belong
to the last foldon predicted by the neural network in the last IS

TABLE 2: Geometrical and Stability Parameters of Im9a

A B C A B C

l (Å) lAB ) 17.5 lBC ) 80.5 â1 0.087 0.019 0.008
∆n ∆nAB ) 5 ∆nBC ) 23 n 14 12 13
r (Å) 7.34 7.20 7.16 foldons 15-20 36-38 70-71
V (Å3) 1664 1575 1549 pj 0.850 0.719 0.690
SAS (Å2) 1544 1725 1505

A B C

∆SAS (RLS) R âh j
1 ∆SAS (RLS) R âh j

1 ∆SAS (RLS) R âh j
1

A 289 (19%) 9 0.444 224 (15%) 14 1.000
B 267 (15%) 6 0.138 76 (4%) 2 0.037
C 245 (16%) 13 1.000 59 (4%) 2 0.017

a Shown are the gometrical and stability parameters of microdomains A, B, and C (upper part) and features of the microdomains of rankk ) 2
of Im9 (in matrix form in the lower part of the table).l represents the length of the linker joining microdomainsi and j (i, j ) A, B, C). ∆n is the
number of residues composing the linker of lengthl. Note thatl ) 3.5∆n, since each residue has the average length of 3.5 Å.r denotes the radius
of the individual microdomains.V is the volume of the microdomain at hand. SAS is the solvent accessible surface. The folding probabilitiesâi

1

are estimated graphically from the entropy profile of Figure 3.n is the number of residues in the native helices. The scopes of the three foldons are
given specifying the numbers of the first and last residues of each of them.pj is the average probability per residue calculated as in eq 4. The lower
part of the table collects in matrix form the lost surface∆SAS, the relative lost surface (RLS), and the new folding probabilityâhk

1. The number of
native residues in each IS helix,R, is computed as in eq 5. The probabilitiesâh j

1 are calculated according to eq 6. The entries refer to helix Y (Y
) A, B, C, matrix row) after binding with helix X (X) A, B, C, matrix column). These values are then used to calculate the folding probability
âk

2 as in eq 7.

Figure 5. Behavior in time of the probabilities of the critical states of
protein Im9. Times are expressed in milliseconds. States with popula-
tions less than 0.01 are not shown. State 1 is the denatured state and
state 8 is the native state (Figure 1). The curves of panel (a) are
calculated by means of the FDC3 model. For comparison we report in
panel (b) also the curves calculated by means of the FDC model. As
in Figure 4, the intermediate states 2 and 4 play a fundamental role. In
state 2 microdomains A and B coalesce to form the precursor of the
observable intermediate state 4 in which A interacts simultaneously
with B and C. State 4 of Im9 exhibits a detectable population both in
the FDC and in the FDC3 model but has a shorter lifetime in the FDC
than in the FDC3 diagram (note the different time ranges on the
abscissas of panels (a) and (b)). State 4 is seen as being scarcely
populated both in the FDC and in the FDC3 model. State 2 preserves
approximately the same features in Im7 and Im9. All the other possible
intermediate states play a negligible role. State 1 exhibits practically
the same features in the FDC and in the FDC3 calculations.

Figure 6. Entropy profile of protein p16 obtained following ref 13.
Predicted helical traits are marked by the nonzero plateaus of the step
functions superimposed on the entropy plot. Zero values indicate
nonhelical segments. Helices 2, 3, 5, and 7, out of seven native helices,
contain a foldon. Helix 7 fulfills the requirements for being considered
as an IS helix but is not considered in the overall dynamics (see text)
so that the three IS helices relevant to the FDC/FDC3 calculations
belong to the native helices 2, 3, and 5. Black bars mark the foldons
within the three IS helices A, B, and C. The foldons associated with
IS helices A, B, and C span the following segments: foldon A (19-
21), foldon B (51-54), and foldon C (85-87). The modular structure
of p16, made up of four ANK repeats,43 is visible from the approximate
symmetries of the entropy profile. The plot has an approximate
periodicity of 65 residues, since that region is the junction of the two
halves of the protein (connecting the second with the third repeat).
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helix (residues 114-120). Using the same notation of the
previous cases, we label the relevant foldons and the corre-
sponding IS helices as A, B, and C. The foldons include the
following stretches of the protein sequence: foldon A (19-
21), foldon B (51-54), and foldon C (85-87) (see Figure 6).
The geometrical parameters needed to evaluate the folding time
(eq 1) are displayed in Table 3. For the characteristic timeτc in
eq 3 we used the valueτc ) 1 ns.

The three-dimensional structure of Figure 2b shows that the
native helices are approximately parallel. This suggests the value
Lthresh) 30% (see Methods and Theory) to be used in eq 5.

The experimental folding time of p16 is 30.3 ms.42 The FDC3
time is 27.9 ms whereas the FDC time amounts to 2.67 ms (see
Table 5). The FDC3 model is successful in reproducing the right

order of magnitude of the folding time and accounts also for
other details of the process that are missed otherwise by the
FDC model. The striking feature of Figure 7 is the drastic
change of the population and decay rate of state 6 as we switch
from the FDC to the FDC3 scenario. Panel (a) of Figure 7 shows
that state 6 is well populated right after the decay of states 1, 2,
and 5. Moreover its population is depleted at a rate that is smaller
than predicted by the FDC model (Figure 7b). States 2 and 5
play a minor role in the overall folding process. They are much
less persistent and populated than state 6 and essentially serve
to channel population into state 6 (see Figure 1). State 6 is a
good candidate for being involved in the intermediate of folding
I responsible for the three-state dynamics of p16. Recent
experimental characterization of stateI42 suggests a rapid

TABLE 3: Geometrical and Stability Parameters of p16a

A B C A B C

l (Å) lAB ) 80.5 lBC ) 87.5 â1 0.020 0.045 0.024
∆n ∆nAB ) 23 ∆nBC ) 25 n 9 9 9
r (Å) 7.21 7.14 7.22 foldons 19-21 51-54 85-87
V (Å3) 1163 1130 1166 pj 0.647 0.708 0.661
SAS (Å2) 1142 1158 1171

A B C

∆SAS (RLS) R âh j
1 ∆SAS (RLS) R âh j

1 ∆SAS (RLS) R âh j
1

A 206 (18%) 5 0.176 6 (0.5%) 1 0.031
B 247 (21%) 6 0.356 185 (16%) 5 0.252
C 6 (0.5%) 1 0.036 193 (16%) 5 0.191

a Shown are the geometrical and stability parameters of microdomains A, B, and C (upper part) and features of the microdomains of rankk )
2 of protein p16 (in matrix form in the lower part of the table).l represents the length of the linker joining microdomainsi and j (i, j ) A, B, C).
∆n is the number of residues composing the linker of lengthl. Note thatl ) 3.5∆n, since each residue has the average length of 3.5 Å.r denotes
the radius of the individual microdomains.V is the volume of the microdomain at hand. SAS is the solvent accessible surface. The folding probabilities
âi

1 are estimated graphically from the entropy profile of Figure 6.n is the number of residues in the native helices. The scopes of the three foldons
are given specifying the numbers of the first and last residues of each of them.pj is the average probability per residue calculated as in eq 4. The
lower part of the table collects in matrix form the lost surface∆SAS, the relative lost surface (RLS), and the new folding probabilityâhk

1. The
number of native residues in each IS helix,R, is computed as in eq 5. The probabilitiesâh j

1 are calculated according to eq 6. The entries refer to helix
Y (Y ) A, B, C, matrix row) after binding with helix X (X) A, B, C, matrix column). These values are then used to calculate the folding
probability âk

2 as in eq 7.

TABLE 4: Geometrical and Stability Parameters of the λ-Repressora

A B C A B C

l (Å) lAB ) 91.0 lBC ) 28.0 â1 0.099 0.085 0.048
∆n ∆nAB ) 26 ∆nBC ) 8 n 18 12 12
r (Å) 9.26 7.75 7.93 foldons 13-22 63-66 82-83
V (Å3) 2467 1445 1578 pj 0.879 0.814 0.776
SAS (Å2) 2307 1378 1475

A B C

∆SAS (RLS) R âh j
1 ∆SAS (RLS) R âh j

1 ∆SAS (RLS) R âh j
1

A 151 (7%) 4 0.164 67 (3%) 10 0.405
B 157 (11%) 5 0.237 115 (8%) 12 1.000
C 76 (5%) 12 1.000 99 (7%) 12 1.000

a Shown are the geometrical and stability parameters of microdomains A, B, and C of theλ-repressor (upper part) and features of the microdomains
of rank k ) 2 of the same protein (in matrix form in the lower part of the table).l represents the length of the linker joining microdomainsi and
j (i, j ) A, B, C). ∆n is the number of residues composing the linker of lengthl. Note thatl ) 3.5∆n, since each residue has the average length
of 3.5 Å. ∆nAB ) 26 results from shortening the linker in order to account for the boundary between helix 3 and 4 that is mispredicted by the neural
network. Actually, the neural network predicts a unique helical segment spanning crystallographic helices 3 and 4 (see Figure 8). However, as
visible in Figure 8, residues 46-51 belong to anR-helix whose entropy minimum is very close to the threshold for being classified as an IS helix.
In this case, to counterbalance the effect of noise affecting the entropy signal (see Discussion), we use the crystallographic boundaries for helices
3 and 4 (shown in Figure 8) and have renormalized the actual loop length∆nAB ) 32 to 26 to account for the loop shortening due to the possible
formation of helix 3. This correction is much in the same spirit of the determination of the effective protein length suggested in ref 50. It optimizes
the predition of the folding rate of theλ-repressor (see Discussion).r denotes the radius of the individual microdomains.V is the volume of the
microdomain at hand. SAS is the solvent accessible surface. The folding probabilitiesâ1 are estimated graphically from the entropy profile of
Figure 8.n is the number of residues in the native helices. The scopes of the three foldons are given specifying the numbers of the first and last
residues of each of them.pj is the average probability per residue calculated as in eq 4. The lower part of the table collects in matrix form the lost
surface∆SAS, the relative lost surface (RLS), and the new folding probabilityâhk

1. The number of native residues in each IS helix,R, is computed
as in eq 5. The probabilitiesâh j

1 are calculated according to eq 6. The entries refer to helix Y (Y) A, B, C, matrix row) after binding with helix
X (X ) A, B, C, matrix column). These values are then used to calculate the folding probabilityâk

2 as in eq 7.
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formation of the intermediate that is not detectable, due to the
relatively long dead-time of the stopped-flow apparatus. Experi-
ments also show that the rate-limiting step is the transition If
N, leading to the native state 8. All these features are consistent
with the fast rise of the population of state 6 and the concomitant
fast decay of states 1, and 5 in the FDC3 plot of Figure 7a.

Comparing the plots computed according to the FDC or the
FDC3 model (Figure 7) it is apparent that states 2, 5, and 6 are
more visible in the FDC3 calculation. Among them, state 6
undergoes the largest amplification in amplitude and its
persistence is increased by approximately 1 order of magnitude.
State 1 seems to undergo no significant changes in the FDC3
method as compared to the FDC calculation.

D. The Folding of theλ-Repressor.Theλ-repressor protein
(PDB code, 1LMB4) is a two-state folder whose folding kinetics
has been successfully modeled within the standard DC model29

and the FDC model.17 This protein provides also a cogent
benchmark for the effectivity of the FDC model in predicting

the change of the folding rate on point mutations of the wild
type (M. Compiani et al., in preparation). Like Im9, the
λ-repressor is used here as a term of comparison to test the
performance of the FDC3 model in a case where it is not strictly
needed. Theλ-repressor is a five-helix bundle whose N-terminal
fragment 1-95 is considered in the present investigation (Figure
2c). From its entropy plot (Figure 8) it is apparent that only
three helical segments are eligible as IS helices (helices 1, 4,
and 5) which we label A, B, and C. Inspection of the tertiary
structure shows that IS helices B and C as well as A and C are
approximately mutually perpendicular. As argued in the Methods
and Theory, in these two cases the appropriate threshold to be
used in eq 5 isLthresh) 5%. The thresholdLthresh) 30% was
assumed for the AB microdomain in which the coalescing IS
helices are approximately parallel. The relevant parameters for
computing the folding probabilities of the microdomains and
eventually to evaluate the folding time (eq 1) are reported in
Table 4. For the characteristic timeτc in eq 3 we used the value
τc ) 0.1 ns.17

Useful insights into the details of the kinetics of folding are
readily obtained from the FDC and FDC3 models. The relevant
diagrams for theλ-repressor are plotted in Figure 9.

The experimental folding time is 0.20 ms29 whereas the FDC3
time is 0.27 ms. The FDC time amounts to 0.21 ms (see Table 5).

From the FDC calculation only state 5 emerges with a
moderate population. The FDC3 scheme shows two alternative

Figure 7. Behavior in time of the probabilities of the critical states of
protein p16. Times are expressed in milliseconds. States with popula-
tions less than 0.01 are not shown. State 1 is the denatured state and
state 8 is the native state (Figure 1). In the intermediate states 2, 5,
and 6 only partial aggregation of the microdomains has occurred. In
state 2 microdomains A and B coalesce to form the precursor of the
observable intermediate state 6. In state 6 microdomain B, besides
interacting with A, begins to interact also with C. Alternatively, state
6 is preceded by state 5 in which helix B first binds to helix C. (a)
Probabilities of the relevant states computed through the FDC3 model.
(b) For comparison we report also the curves calculated by means of
the FDC model. The more realistic description of the interactions of
microdomains of rank 2 in panel (a) has a visible effect on the overall
kinetics of the folding process. The decay of state 1 takes place on the
same time scale as the rise and decay of states 2 and 5 both in the
FDC and in the FDC3 model. The typical time is about 5 ms (note the
different units on the abscissas of panels (a) and (b)). The major changes
are visible in the curves of states 6 and 8. In particular, the population
of state 6 increases and the FDC3 estimate for the lifetime is
approximately 10-fold longer than the FDC value. Correspondingly,
state 8 is populated at a rate that is 1 order of magnitude larger in the
FDC3 model than in the FDC scenario. Also the folding time increases
by 1 order of magnitude (see the text and Table 5). The FDC calculation
predicts smaller populations for states 2, 5, and 6.

Figure 8. Entropy profile of theλ-repressor derived following ref 13.
Predicted helical traits are marked by the nonzero plateaus of the step
function superimposed on the entropy plot. Zero values indicate
nonhelical segments. Helices 2 and 3 are non-IS helices. The foldons
associated with helices 1, 4, and 5 span the following segments (black
bars): foldon A (13-22), foldon B (63-66), and foldon C (82-83).
The boundary between the native helices 3 and 4 is missed by the neural
network, which predicts a unique helical region encompassing helices
3 and 4. The step function in correspondence of helices 3 and 4
represents the crystallographic data. The entropy plot indicates that helix
3 is a quasi-IS helix.

TABLE 5: Comparison of Computed and Experimental
Folding Timesa

protein folding τFDC (ms) τFDC3 (ms) τexp (ms)

Im7 three-state 0.77 2.98 3.06
p16 three-state 2.67 27.90 30.30
λ-repressor two-state 0.21 0.27 0.20
Im9 two-state 0.68 1.78 0.67

a As far as the computed times are concerned,τFDC values have been
calculated according to the FDC model,17 whereas theτFDC3 values are
evaluated following the FDC3 model (see Methods and Theory).τFDC

of Im9 and theλ-repressor have been computed first in ref 17. Note
that the folding time of Im7 is 3.06 with 4 M Na2SO4.34 The
experimental timesτexp for Im7 and Im9 have been computed by using
the kinetic data of refs 33 and eq 6 of ref 34. For theλ-repressor the
data have been drawn from ref 45.
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paths 1-2-6-8 and 1-5-6-8 (Figure 1). The first one is by
far dominant since state 5 has a much larger population than
state 2. State 6, where the two paths merge, is also scarcely
populated in the FDC3 scheme and is not at all visible in the
FDC calculation (i.e. below the 0.01 threshold).

IV. Discussion

A general overview of the results obtained with the FDC and
the FDC3 models for the folding times of the two-state and
three-state folders examined in this paper is given in Table 5.
The fundamental outcome is that the FDC3 model succeeds in
reproducing the experimental folding rates of Im7 and p16 that
are instead poorly accounted for by the FDC scheme. However,
the successful test of the FDC3 model has additional implica-
tions that can be better understood by considering the physical
meaning of the FDC3 procedure (outlined in the Methods and
Theory section).

The physically grounded prescription for the evaluation of
theâi

k coefficients withk g 2 (see Methods and Theory) is the
major novelty introduced through the FDC3 calculation, since
so far these variables were set to sensible but otherwise arbitrary
values within the framework of the DC or FDC model.17,26-28,30

The proteins examined in this paper do possess three foldons,
so that it suffices here to apply the new calculation to theâi

2

(folding probability of the ith microdomain of order 2) to
supplant the FDC and DC prescriptionâi

2 ) 1. The FDC3
estimatesâi

2 e 1 are computed according to eqs 6 and 7.
The FDC3 scheme introduces an additional coupling between

formation of partial and local structures and more global
structures, besides the similar coupling which is already
introduced by the orientationalγ coefficients in the FDC and
DC methods (Methods and Theory). Indeed, also the FDC3

estimates forâi
2 depend on the three-dimensional packing

through the solvent accessible surface area (RLS in eq 5) lost
upon aggregation and subsequent formation of a microdomain
of higher order. This indicates that in the FDC3 model local
and global events get more intertwined than in the FDC or DC
models. As a matter of fact the DC assumptionâi

2 ) 1 means
that all the native helices are stabilized once they get bound to
any aggregate of orderk g 2. This amounts to saying that a
minimal development of the tertiary structure is sufficient to
ensure the proper folding of the native helices involved in the
current collision.

Instead, within the FDC model, the IS helices and the non-
IS helices have different fates. Actually, formation of the non-
IS helices does not take place in the early stages of the folding
process but requires necessarily that a more developed ap-
proximation of the native scaffold is formed, with the dominant
contribution of the IS helices. In the FDC3 model this feature
is somewhat more evident since also the aggregates of the IS
helices of orderk ) 2 are possibly assigned marginal native
character sinceâi

2 < 1 (eqs 6 and 7). This implies that the IS
helices themselves need more assistance from the tertiary
structure being formed to enter the native folded state.

This aspect stresses the coexistence of cooperative and
hierarchical features in the DC, FDC, and FDC3 models that
seem capable of accounting for different degrees of cooperativity
and modularity of the folding mechanism. If we accept the
view18,35 that the fully hierarchical and the fully cooperative
mechanisms are limiting scenarios of a continuous range of
different mechanisms, we can argue that these limiting cases
can be approached by the FDC model by tuning properly its
variables. In accord with the remarks of the previous paragraph,
we can conclude that by turning from the FDC to the DC
calculation (by performing the limitâi

2 f 1 and dropping any
discrimination between IS and non-IS helices) the FDC model
becomes more hierarchical, as formation of the native secondary
structure is more independent of the stabilization of the native
tertiary structure. On the contrary, by introducing the FDC3
estimates (âi

2 e 1), the FDC folding mechanism becomes more
cooperative since stabilization of local and global structures
tends to become more dependent from each other. This item is
discussed in more quantitative terms in by M. Compiani
(submitted for publication). In light of these considerations the
successful application of the FDC3 model to Im7 and p16
implies that hierarchical features inherent in the FDC3 model
are also found in folding mechanisms having higher complexity
than the bare two-state mechanisms described by the FDC model
in ref 17. This is in agreement with the conclusions of ref 23
that discusses the possibility of extending the modular view of
folding to three-states folders.

Two-state folders have been included in our analysis to
provide a more complete test of the FDC and FDC3 models on
folding processes of different complexity. Expectedly, the
folding times for the proteins examined in this paper obey the
relationτFDC < τFDC3. This is clearly ascribed to the overestima-
tion of the folding probabilitiesâj

2 ) 1 that is proper to the
FDC model. From Table 5 it is apparent that the improved
calculation of the folding probabilities for complex micro-
domains of rankk ) 2 is crucial for the three-state proteins,
but is by far less critical for the two-state proteinsλ-repressor
and Im9. For the latter proteins, the FDC3 values are expected
to converge to the FDC folding rates. The data in Table 5
conform satisfactorily to this prediction.

The study of the homologous proteins Im7 and Im9 is also
quite illuminating. The degeneracy of the folding code is well

Figure 9. Behavior in time of the probabilities of the critical states of
the two-stateλ-repressor protein. Times are expressed in milliseconds.
States with population less than 0.01 are not shown. State 1 (denatured
state) and state 8 (native state) are the only states that are populated.
(a) Probabilities of the relevant states computed through the FDC model.
(b) Probabilities of the relevant states computed through the FDC3
model. The more detailed description of the interactions of the
microdomains of rank 2 in panel (b) has a moderate effect on the overall
kinetics of the folding process (see Table 5). Intermediate state 5 is
assigned comparable populations and decay both in the FDC and in
the FDC3 calculations.
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exemplified in the case of Im7 and Im9 in which different
sequences give rise to similar structures. In addition, albeit
sequence homology of Im7 and Im9 is moderate, the two
proteins have quite similar entropy plots (Figure 3), although
Im7 has a three-state mechanism and Im9 has a two-state folding
process. For this reason Im7 and Im9 are quite a critical
benchmark for the FDC and FDC3 models. The fact that the
folding rates of both proteins are well reproduced confirms the
pivotal role played by the foldons, such that appropriate
modulation of the entropy profile in the foldon regions can make
the folding mechanism switch from two-state to three-state
mode.

In general, the effectivity of the FDC and FDC3 models in
predicting the folding times of proteins (see Table 5 and the
additional data in ref 17) confirms that the foldons are the key
elements of folding. Such a possibility of focusing on a limited
number of IS helices as determinants of the folding dynamics
supports the contention that the FDC scenario is a promising
tool for building minimal models of protein folding that are
nonetheless sensitive to sequence features. In this respect the
neural network is responsible for the sequence specific character
of both models that makes them effective in capturing the
properties of relatively short stretches of the residue sequence.
A case in point is the discrimination of IS and non-IS helices
within an individual protein. The peculiar sensitivity of the FDC/
FDC3 models to as small details of sequence as single point
mutations will be examined by M. Compiani (in preparation).

In the framework of the FDC and FDC3 models the IS helices
act as building blocks that resemble the elementary units used
in other approaches to carry out a dissection of folding on a
thermodynamic or structural basis.22,31,46 In ref 17 we have
shown how to derive the thermodynamic properties of the IS
helices from the sequence of the protein. Interestingly, our
estimates of the stability of the IS helices correlate well with
the experimental helicities measured in the same isolated pep-
tides.17 Focusing on the IS helices affords a gross-grained par-
tition of the phase space that is based on all the possible pairings
of the available units (see Figure 1). An interesting feature of
the FDC and FDC3 models is that through the neural network
one takes maximal advantage of the pieces of information coded
in the residue sequence. This is progress toward theoretical
mehods that are capable of predicting folding rates from
sequence. As already stressed above, unlike recent methods that
rely entirely on sequence information,49,50the FDC model uses
also features derived from the tertiary structure (see Methods
and Theory). However, the FDC method gives a deeper insight
into the details of protein folding (e.g. the nature of possible
intermediates) that is useful to devise modified computational
schemes such as the FDC3 method proposed in this paper.

In this connection the possibility to visualize and estimate
the lifetimes and populations of the intermediates as well as
the relative probability of different pathways is a notable feature
of the DC/FDC/FDC3 models (Figures 4, 5, 7, and 9). This is
valuable for medical applications since it has been recently
speculated that the lifetimes of the intermediates are crucial for
recognizing amyloidogenic proteins.51

According to the FDC3 calculation the visible intermediates
of Im7 are associated with states 2 and 4 (Figures 1 and 4).
State 4 has a peak population of around 0.35. The folding
process of Im9 follows a similar pathway where state 4 is now
hardly detectable with a population around 0.015-0.050 both
in the FDC and in the FDC3 scheme (Figures 1 and 5), in accord
with the two-state nature of the folding mechanism. On the
contrary, the mechanism of p16 initially takes two alternative

paths that populate respectively state 2 or 5. The transient
populations of the latter states eventually merge to give rise to
the long-lived state 6 where IS helix B is simultaneously
interacting with IS helices A and C (Figures 1 and 7). These
features of state 6 are consistent with the picture of the transition
state emerging from recentφ-value analysis of protein p16.44

The existence of two alternative pathways of p16 eventually
merging in state 6 agrees with the initial parallelism followed
by different sequential steps that is expected to characterize
funnel-like landscapes.52 The long-lived state 4 of Im7 and state
6 of protein p16 meet the requisites for being considered
gateway states52 of the folding dynamics. Such gateway states
are near native well populated, obligatory and rate-limiting
conformations that are reached in the fast initial steps of folding.
They correspond to the bottlenecks of the microroutes on the
funnel-shaped energy surface.52 These requisites are also met
by states 2 and 5 respectively in the two-state folders Im9 and
λ-repressor (Figures 1, 5, and 9).

The populations obtained within the FDC and the FDC3
models for Im7 and p16 exhibit interesting differences. State 4
of Im7 is approximately equally populated, both in the FDC
and in the FDC3 scheme (Figure 4), but appears to be more
persistent in the FDC3 plot. Also state 2 is present in both
models but the FDC3 calculation predicts a larger peak
population and a slower decay (Figure 4). The results obtained
for state 4 of Im9 are approximately invariant with respect to
the computational scheme adopted (Figure 5), save for a slightly
larger peak population and a slower decay in the FDC3 model.
For p16 the intermediate states 2, 5, and 6 are more visible in
the FDC3 diagram than in the FDC plot (Figure 7). State 6
undergoes a much larger increase in population and decays at
a sensibly slower rate in the FDC3 scheme than in the FDC
calculation. Finally, state 5 dominates the folding process of
the λ-repressor (Figure 9) and exhibits similar behavior in the
FDC and FDC3 plots. The FDC3 calculation enhances moder-
ately the populations of states 2 and 6 that were not visible in
the FDC plot.

It is significant that our calculations for Im7 and p16 show
that some intermediate states are much less visible and the
folding time is grossly different from the experimental value
when we abandon the FDC3 scheme and apply the bare FDC
model. States 2 and 4 for Im7 in Figure 4 and state 6 for p16
in Figure 7 are two examples where the existence of long-lived
intermediates is correctly reproduced only within the FDC3
scheme. This is a successful test of the ability of the FDC3
scheme to display the dominant intermediate state of folding
that is proper to three-state folders. However, somewhat less
neat results are obtained for two-state foldersλ-repressor and
Im9 since the FDC calculation shows that intermediates (in the
sense of the partition of Figure 1) exist with nonnegligible
population, which seems inconsistent with two-state folding
mechanisms. This is essentially the case of state 2 for Im9
(Figure 5) and state 5 for theλ-repressor (Figure 9). Therefore,
although the kinetic data on the folding times are satisfactory
(Table 5) the detailed description of the folding pathway needs
a more thorough discussion. In particular the most critical issue
is to what extent the partition in states based on the aggregates
of increasing order (Figure 1) reflects the presence of experi-
mentally detectable intermediates.

Some considerations may help to deal with such a puzzling
problem. Relevant to our discussion is the preliminary observa-
tion that the same protein can exhibit both two-state or three-
state folding in response to varying environmental conditions.34

However, such a level of detail is not attainable by the FDC/
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FDC3 schemes that in the present version cannot discriminate
between different environmental parameters. This is due to the
very schematic description of the interactions between protein
and solvent via the diffusion coefficient and temperature (see
Methods and Theory). Analogous limitations of the FDC/FDC3
schemes, pertaining to the need of a more accurate representation
of the intramolecular interactions. are discussed by M. Compiani
et al. (in preparation). Therefore the theoretical predictions of
the FDC/FDC3 models are not expected to capture these
subtleties of the folding mechanism.

As far as the unexpected emergence of populated intermedi-
ates is concerned, it is to be noted that similar problems have
been encountered on applying the DC scheme to two-state
folders. The analysis carried out in ref 30 points out that the
emergence of intermediates in DC models is quite sensitive to
the values of theâi

1s. This is the case of 1EBD C-chain and
1BDC where adjusting the estimates forâi

1s enhances or
alternatively depresses the population of an intermediate state,
though these proteins are reported to have two-state folding.
This indicates that possible inaccuracies in the determination
of the âi

1s may be conducive to spurious increase of the
probability of occurrence of some intermediate states. Within
the framework of the FDC/FDC3 models such an uncertainty
is mainly due to the noise affecting the entropy signal32 (see
also final remarks in the present Discussion section).

Concerning the relationship between the intermediates envis-
aged by the partition of Figure 1 and the intermediate states
that are experimentally detected, our view is that it appears more
reliable to associate the experimental intermediates with the
theoretical aggregates of higher rankk > 2. The 2-fold reason
for these clusters to be more easily observable is that they do
have a larger number of stabilizing interactions and also that
interhelical contacts formed early during folding are expected
to be more unstable than those formed later (as suggested by
hydrogen exchange experiments47). Accordingly, states laying
close to the unfolded state (see the graph of Figure 1) are less
significant than those that are closer to the final state 8. This is
the case of state 2 as compared with state 4 for Im7 and Im9,
as well as states 2 and 5 in comparison with state 6 for p16.
Consistent with this interpretation is the finding that state 4 is
hardly visible in the FDC3 and FDC plots of Im9, which is
known to have a two-state folding mechanism, whereas state 2
is well populated independently of the model used (see Figure
5). In a similar fashion, the FDC3 and FDC plots of the
λ-repressor exhibit a negligible population for state 6 and more
substantial probability for state 5, which represents the initial
stage of the favorite folding pathway.

A final comment concerns the accuracy of the folding rates
of Table 5. As a premise, we can state that quite crucial within
our computational scheme is the reliability of the entropy signal
that is used to determine the location of foldons, the length and
location of the native helices, and also the stability of the IS
helices. We have already mentioned that the noise affecting the
entropy signal propagates down to theâi

1s and affects also the
population levels of the possible intermediates. Similarly,
inaccuracies in the prediction of the native helices (particularly
the position of their end residues) increases the uncertainty of
the folding rates. The role of these parameters in determining
the estimate of the folding rate can be appreciated in the
Methods and Theory section. Somewhat analogous effects were
investigated in ref 30 by changing systematically the length of
interhelical loops.

A typical manifestation of the noise blurring the entropy
signal is the defective prediction of helices 3 and 4 of the

λ-repressor (see legend to Table 4 and Figure 8). In this case
the neural network prediction incorporates helix 3 and helix 4
into a unique helical region. To optimize prediction we adopted
a hybrid strategy in which we considered the crystallographic
boundaries of helix 4 to determine the geometric properties of
IS helix B, nevertheless taking into account that helix 3 had
been detected by the neural predictor. This is achieved by
renormalizing the loop length between IS helix A and B as
detailed in the legend to Table 4.

V. Conclusion

In conclusion, the scope of the FDC model is enlarged as
we have demonstrated that the FDC3 variant can effectively
account for several features of the folding kinetics of three-
state proteins. The general meaning for a theory of protein
folding is that the same model describes successfully the kinetics
of two-state and three-state folders, where the validity of
previous criteria (e.g. contact order48) is limited to two-state
proteins.49 On the other hand, other empirical methods for the
determination of the folding rate with broader validity50 are
based on features that are somehow incorporated in the FDC/
FDC3 model. On the whole, such methods rely on generic
parameters such as the contact order, protein length, and content
in secondary structure. Clearly, a direct comparison is not
possible since the FDC/FDC3 models do not depend explicitly
on contact order or chain length. However, it is quite safe to
state that the FDC/FDC3 models do not contradict the essence
of these methods. In fact protein length is related to the maximal
separation in sequence of the foldons whereas contact order is
conceptually akin to the mean separation in sequence of the
foldons, provided we consider the interhelical contacts among
the residues in the foldons as the key contacts which determine
the folding process. Data on the participation of these residues
in the transition state provide preliminary evidence that this may
be true (M. Compiani, E. Capriotti, and M. Vendruscolo, in
preparation). These findings and the fact that foldons belong to
nativelike secondary structures are also consistent with the
extended nucleus theory,18 which depicts the transition state as
a distorted version of the native state. The successful application
of the FDC3 model hints at the remarkable flexibility exhibited
by the FDC scenario in describing folding processes with
different degrees of complexity and cooperativity. As far as the
general theory of protein folding is concerned, this gives credit
to the view that the diffusional dynamics of foldons might be
a promising basis for a unified theory of the folding of helical
proteins.
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