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ABSTRACT

I-Mutant2.0 is a support vector machine (SVM)-based
tool for the automatic prediction of protein stability
changes upon single point mutations. I-Mutant2.0
predictions are performed starting either from the
protein structure or, more importantly, from the
protein sequence. This latter task, to the best of our
knowledge, is exploited for the first time. The method
was trained and tested on a data set derived from
ProTherm, which is presently the most comprehens-
ive available database of thermodynamic experi-
mental data of free energy changes of protein
stability upon mutation under different conditions.
I-Mutant2.0 can be used both as a classifier for
predicting the sign of the protein stability change
upon mutation and as a regression estimator for
predicting the related DDG values. Acting as a class-
ifier, I-Mutant2.0 correctly predicts (with a cross-
validation procedure) 80% or 77% of the data set,
depending on the usage of structural or sequence
information, respectively. When predicting DDG
values associated with mutations, the correlation of
predicted with expected/experimental values is
0.71 (with a standard error of 1.30 kcal/mol) and 0.62
(with a standard error of 1.45 kcal/mol) when struc-
tural or sequence information are respectively adop-
ted. Our web interface allows the selection of a
predictive mode that depends on the availability of
the protein structure and/or sequence. In this latter
case, the web server requires only pasting of a protein
sequence in a raw format. We therefore introduce
I-Mutant2.0 as a unique and valuable helper for pro-
tein design, even when the protein structure is not yet
known with atomic resolution. Availability: http://
gpcr.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/
I-Mutant2.0.cgi.

INTRODUCTION

When engineering proteins, an important problem to be
considered is to which extent a mutation will affect the
stability of the new protein with respect to the wild type.
Different methods have been implemented in order to address
this task. They are mainly based on the development of dif-
ferent energy functions, suited to compute the stability free
energy changes (1–5).

Recently, an approach based on a neural network system
was described (6). In this application, instead of directly
estimating the relative stability changes upon protein mutation
[the DDG value, (1–5)], a neural network predicts the direc-
tion towards which the mutation shifts the stability of the
protein (namely the DDG sign).

All the methods developed so far, are however limited in
that prediction can be carried out only when the protein 3D
structure is available in the PDB database. In the post-genomic
era, however, mutagenesis experiments may start from the
proteome. Therefore, the development of predictors that
help to design mutated proteins from the only sequence is
urgent.

Here, we present a new server I-Mutant (2.0). I-Mutant2.0
can predict the stability change of the mutated protein struc-
ture, and, for the first time, it can predict to which extent a
mutation in a protein sequence will or will not affect the
stability of the folded protein. I-Mutant2.0 is based on support
vector machines (SVMs) and it has been trained to predict
both the direction (the DDG sign) of the protein stability
changes and the DDG associated values. Thanks to the
availability of a large database of thermodynamic data of
mutated proteins (7), we show that for the specific task of
predicting the DDG sign, I-Mutant2.0 correctly predicts
(with a cross-validation procedure) 80 or 77% of the data
set, depending on the input of structural or sequence informa-
tion, respectively. When predicting DDG values associated
with the mutation, the correlation of predicted with expected
values, as taken from the experimental database, is 0.71 and
0.62, depending on the structure- and sequence-base predic-
tion, respectively.
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DESCRIPTION

I-Mutant2.0 was trained to accomplish four different tasks:

(i) Prediction of the direction of the protein stability changes
upon single point mutation from the protein tertiary
structure (a classification task);

(ii) Prediction of theDDG value of the protein stability changes
upon single point mutation from the protein tertiary
structure (a function approximation task);

(iii) Prediction of the direction of the protein stability changes
upon single point mutation only from the protein sequence
(a classification task);

(iv) Prediction of the DDG value of the protein stability
changes upon single point mutation only from the protein
sequence (a function approximation task).

For each task, I-Mutant2.0 is based on SVMs. We tested
several kernels and we found that the most convenient for the
problems at hand is the one based on Radial Basis Functions
ðRBF‚kernel ¼ exp½�G k xi � xj k 2�Þ. The results described
here are therefore relative only to the RBF kernel.

For the classification task and for assigning the DDG values,
we basically adopt the same input code by identifying two
labels: one represents the increased protein stability (DDG > 0,
label is +), the other is associated with the destabilizing muta-
tion (DDG < 0, label is �). The input vector consists of 42
values. The first two input values account, respectively, for
the temperature and the pH at which the stability of the
mutated protein was experimentally determined. The next
20 values (for 20 residue types) explicitly define the mutation
(we set �1 to the element corresponding to the deleted residue
and 1 to the new residue, all the remaining elements are kept
equal to 0). Finally, the last 20 input values encode the residue
environment that is a ‘spatial environment’ when the protein
structure is available or the nearest sequence neighbors, when
only the protein sequence is available. When the protein
structure is known (and the prediction is performed on the
protein structure) each of the 20 values is the number of the
encoded residue type, to be found inside a sphere of a 0.9 nm
radius and centered on the coordinates of the residue that
undergoes mutation. Alternatively, when the prediction is
performed starting from the protein sequence, each of the
20 input values is again the number of the encoded residue
type, to be found inside a symmetrical window, centered at
the mutated residue, that spans the sequence towards the left
(N-terminus) and the right (C-terminus) for a total length of
19 residues.

The RSA value (Relative Solvent Accessible Area) can be
calculated with the DSSP program (8) only when prediction is
structure based, dividing the accessible surface area value of
the mutated residue by the free residue surface. In this case,
a further input value (for a total sum of 43 numbers) includes
the relative solvent accessible area of the mutated residue
only when the protein structure is considered. This strategy
is similar to what was previously done with a neural network-
based predictor for predicting stability changes upon mutation
starting from the protein structure (6).

The RI value (Reliability Index) can be computed only
when the sign of the stability change is predicted and
is evaluated from the output of the SVM O as RI =
20*abs(O � 0.5).

I-Mutant2.0 accuracy

I-Mutant2.0 was trained and tested with a cross-validation
procedure on a data set derived from the current release
(December 2004) of the Thermodynamic Database for
Proteins and Mutants [ProTherm, (7)]. The data set of pro-
teins was extracted from ProTherm with the following
constraints:

(i) Only single point mutations were considered for each
protein (no multiple mutations were taken into
account).

(ii) The correspondent free energy change of protein stab-
ility (DDG value) had been experimentally detected and
experimental conditions (temperature and pH) were also
listed in the database.

After this filtering procedure, our data set comprised 2087
different single mutations in 65 different proteins, 58 out of
which were also known with atomic resolution. For each muta-
tion, the corresponding free energy change was collected. The
subset of structures known with atomic resolution (with a total
of 1948 different single mutations) contains proteins uni-
formly distributed in the four predominant structural classes
according to the SCOP classification (scop.mrc-lmb.cam.
ac.uk). The final sets are available at http://gpcr.biocomp.
unibo.it/~emidio/I-Mutant2.0/dbMut.html.

In Table 1, we list the accuracy obtained when I-Mutant2.0
is adopted as a classifier, and discriminates whether a given
mutation increases (label +) or decreases (label �) the protein
stability. The accuracy of the structure-based prediction is
0.80 and it is higher than that obtained when the prediction
is sequence based. A similar value was previously obtained
with a neural network-based predictor, trained/tested on a data
set smaller than that adopted in this study (6). However, a
remarkable result of this paper is that the overall accuracy is
0.77 even when the predictor is sequence based.

I-Mutant2.0 was also trained/tested to predict the value of
the free energy stability change upon single point mutation,
starting from the protein structure or sequence. In this case, the
accuracy was evaluated by measuring the correlation between
the predicted (adopting a cross-validation procedure) and
the observed DDG values. The correlation of the predicted
and experimental data is 0.71, with a standard error of
1.3 kcal/mol, when the method is structure based (Figure 1).
When it is sequence based, the correlation between the
observed and the predicted data is 0.62 with a standard
error of 1.45 kcal/mol.

As a final observation, it must be considered that 89% of the
proteins are contributing to the training/testing set adopted
to implement both the sequence- and structure-based SVM
method. With this in mind, the small scoring difference in

Table 1. I-Mutant2.0 cross-validation accuracy

I-Mutant2.0 input Q2 P(+) Q(+) P(�) Q(�) C

PDB 0.80 0.73 0.56 0.83 0.91 0.51
Sequence 0.77 0.69 0.46 0.79 0.91 0.42

Q2 = Number of correct predictions/number of examples.
P(s) = Number of correct prediction for class s/all prediction made for s.
Q(s) = Number of correct prediction for class s/observed in class s.
C = Matthews’s correlation coefficient [compare with (6)].
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accuracy that I-Mutant2.0 achieves starting from the protein
structure or sequence (0.80 versus 0.77) suggests that to a large
extent protein stability can also be correctly evaluated when
specific interactions within the sequence neighbors are
captured.

SERVER DETAILS

Inputs

On the I-Mutant2.0 web page, two alternatives are available:
predicting the protein stability changes upon single point
mutation starting from the protein structure or sequence
(see Figure 2). In the first case, the PDB code of the protein
is required; in the latter, the protein sequence needs to be
pasted in the appropriate box. As discussed above and listed
in Table 1, the accuracy is higher when the prediction is
structure based. Nevertheless, even when it is sequence
based the score is remarkable. Following the first option,
two choices are available: (i) I-Mutant2.0 acts as a classifier,
and the sign of the free energy stability change upon muta-
tion is predicted; (ii) I-Mutant2.0 acts as a regression esti-
mator and the value of free energy stability change (DDG)
upon mutation is predicted. In both cases, I-Mutant2.0 allows
the selection of the prediction of protein stability changes at
different ranges of temperature and pH (see Figure 2).

Outputs

Four different outputs can be retrieved, depending on the
selected mode. The user can start from the protein structure
or sequence. In either case, the prediction of the value of free
energy change or only its sign can be obtained. In all cases,
a table of 19 rows (the 19 residues that are different from the
one present in the sequence at a selected position) is returned.

A further option, when activated, allows to highlight only the
row corresponding to a given mutation.

The four different possible predictive options correspond
to a different number of columns returned in the output table.
The common number is six columns, listing respectively: the
sequence position under consideration, the original residue
name (one letter code), the mutated residue (one letter code),
the predicted free energy change value (DDG) or the sign of
the prediction (Increase/Decrease), the temperature and the pH
at which the prediction has been carried out.

One more column may be present in the output table that
lists in turn the reliability index value of the prediction (RI) or
the solvent accessible surface area [RSA, computed with the
DSSP program (8)]. This occurs when the sign of the stability
change is predicted starting from the protein sequence or the
DDG value of the free energy change is predicted starting from
the protein structure, respectively.

Both RSA and RI are computed and present in the output
table only when the sign of the protein stability change is
predicted starting from the structure. In this case, the number
of columns in the output table is 8.

From the above description, it is evident that both the
structure-based and the sequence-based predictions of the
sign of the protein stability change upon mutation are those
endowed with the reliability scoring index (RI), and this
allows the sorting out of the subset of more reliable predic-
tions [see (6)].

When the DDG values are predicted from the protein struc-
ture or sequence, an estimate of the standard error can be
evaluated from the linear regression between the predicted
and the expected values and can be associated to the predicted
value. Results obtained for the structure-based case are shown
in Figure 1. With this procedure, the standard error value is
1.30 and 1.45 kcal/mol, when the prediction is structure or
sequence based, respectively.

Figure 1. Correlation plot between the experimentally observed and the predicted DDG values when the SVM method is structure based. The correlation is 0.71 and
the corresponding standard error is 1.3 kcal/mol.
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