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Abstract: Several studies have linked disruptions of protein stability and its normal functions to
disease. Therefore, during the last few decades, many tools have been developed to predict the free
energy changes upon protein residue variations. Most of these methods require both sequence and
structure information to obtain reliable predictions. However, the lower number of protein structures
available with respect to their sequences, due to experimental issues, drastically limits the application
of these tools. In addition, current methodologies ignore the antisymmetric property characterizing
the thermodynamics of the protein stability: a variation from wild-type to a mutated form of the
protein structure ( XW → XM ) and its reverse process ( XM → XW ) must have opposite values of
the free energy difference (∆∆GWM = −∆∆GMW ). Here we propose ACDC-NN-Seq, a deep neural
network system that exploits the sequence information and is able to incorporate into its architecture
the antisymmetry property. To our knowledge, this is the first convolutional neural network to
predict protein stability changes relying solely on the protein sequence. We show that ACDC-NN-Seq
compares favorably with the existing sequence-based methods.

Keywords: deep learning; protein stability; free energy changes; antisymmetry; ACDC; sequence

1. Introduction

Predicting protein stability changes upon genetic variations is still an open challenge.
It is essential to understand the impact of the alterations in the amino acid sequence, mainly
due to non-synonymous (or missense) DNA variations leading to the disruption or the en-
hancement of the protein activity, on human health and disease [1–4]. In particular, protein
stability perturbations have already been associated to pathogenic missense variants [5]
and they were shown to contribute to the loss of function in haploinsufficient genes [6].

The protein stability changes upon variations of the amino acid sequence is usually
expressed as the Gibbs free energy of unfolding (∆∆G), which is defined as the difference
between the energy of the mutated structure of the protein and its wild-type form (∆∆G =
∆GM − ∆GW). Thermodynamics imposes an antisymmetry relationship on ∆∆G that can
be summarized as follows: given the wild-type (W) and mutated (M) protein structures,
differing by one residue in position X, the quantity ∆∆GWM(= ∆GW − ∆GM) represents the
change in the protein stability caused by the amino acid substitution XW → XM . Similarly,
given the symmetry between the two molecular systems M and W, for the reverse variation
XM → XW the corresponding change in Gibbs free energy has the opposite sign:

∆∆GWM = −∆∆GMW . (1)
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Since experimental measurement of ∆∆G is a time-consuming and complex task,
during the last decades several computational tools have been developed to predict ∆∆G
values. Some methods are structure-based, requiring the knowledge of the protein tertiary
structure [7–12], others are sequence-based, either relying only on protein sequences [13–15]
or optionally taking advantage of the protein structure when available [16,17]. However,
most of these methods violate the antisymmetry property and suffer from high biases in
predicting reverse variations [10,18–23]. To address this problem we recently introduced
ACDC-NN, a novel structure-based method that satisfies the physical property of anti-
symmetry, while reaching comparable performance to the state-of-the-art methods [24].
However, the experimental structure determination and characterization of protein ther-
modynamical features are still limited [18], while a dramatic increase in protein sequence
databases has occurred as genomic and metagenomic sequencing efforts have expanded
in the last years. The latest release of UniProtKB/TrEMBL protein database contains
214,406,399 sequence entries in all, including 175,817 human proteins, while the Protein
Data Bank contains 177,655 entries, 52,485 of them human. Hence, computational ap-
proaches able to predict the impact of genetic variations on the protein stability using only
sequence information are needed. To this aim, we created ACDC-NN-Seq, a sequence-based
version of ACDC-NN that, like its predecessor, achieves accurate predictions satisfying the
antisymmetry property, without the need for tertiary protein structures. Here we show that
ACDC-NN-Seq compares well with both sequence-based and structure-based methods.
We tested the antisymmetry of the predictions on an unbiased dataset and the accuracy on
three clinically relevant proteins, avoiding overfitting by filtering out sequence similarities
greater than 25%.

2. Materials and Methods
2.1. Datasets and Cross-Validation

Since the application of a deep learning technique requires a large amount of data
to achieve the best performance, we pre-trained ACDC-NN-Seq using the predictions of
another method, DDGun3D, which has shown to achieve antisymmetry with good perfor-
mance. DDGun3D was not trained on experimental data, but it is based on evolutionary
information and statistical potentials [14]. The pre-training phase was performed on an
artificial set of variants created from the Ivankov dataset [21], that we named IvankovD-
DGun. The ∆∆G values for this dataset were calculated using DDGun3D and the obtained
scores were learnt by ACDC-NN-Seq.

For training/testing the network we considered the observed experimental ∆∆G
variants reported by some of the most widely used datasets extracted from Protherm [25]
database, already cleaned for redundancies and inaccuracies that are known to affect this
database, which are: S2648 [26] and Varibench [27]. The ACDC-NN-Seq performance was
tested on the following datsets: Ssym [26], p53 [28], myoglobin [29] and frataxin mutants
from the CAGI5 challenge [30]. The datasets are summarized in Table 1 and a complete
description can be found in our previous study [24].

Table 1. Brief description of the datasets used. The table reports the number of variants available on
each dataset, their usage in this study and whether or not the experimental ∆∆G values are available.
DDGun3D was used for the estimation of ∆∆Gs when they are not available.

Dataset Number of Variants Usage Experimental ∆∆G

IvankovDDGun 600,000 Pre-Training No
Ivankov2000 2000 Transfer Learning No
S2648 2648 Transfer Learning Yes
Varibench 1420 Transfer Learning Yes
Ssym 684 Test Yes
Myoglobin 134 Test Yes
p53 42 Test Yes
Frataxin-CAGI 8 Test Yes
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Since these datasets often contain proteins with a high degree of sequence similarity
between them, we avoided the related overfitting issues by filtering out similarities above
25%, as done in ACDC-NN; we generated cross-validation folds with blastclust algo-
rithm [31] to create clusters of protein with sequence identity lower than 25% (command
blasclust -i infile.fasta -o out.custers -p T -L 0.5 -b F -S 25).

2.2. Sequence Profiles

ACDC-NN-Seq uses the evolutionary information derived from multiple sequence
alignments. Through the alignment it is possible to obtain a profile, i.e., an N × 20 matrix,
where each entry Prof(i,j) corresponds to the frequency of the j-th residue in the i-th
sequence position. N represents the protein length and 20 are the different aminoacids
residues. Multiple sequence alignments were computed using the Uniprot database (release
2016) by the hhblits tool [32] with default parameters.

2.3. ACDC-NN-Seq Architecture

The ACDC-NN-Seq architecture is the sequence-based counterpart of the 3D ver-
sion, already published [24]. Here, we report only the relevant points, leaving out some
mathematical details.

ACDC-NN-Seq is an Antisymmetric Convolutional Differential Concatenated Neural
Network (ACDC-NN) that takes as inputs both direct and reverse variations, processes
them by convolution operations and then uses the extracted features as input for two
siamese neural networks [33,34]. Specifically, each of the two ACDC-NN-Seq inputs
consists of 160 elements to code variation and sequence evolutionary information:

• Variation (V): 20 features (one for each amino acid) coding for the variation by setting
all the entries to 0 with the exception of the wild-type and the variant residue positions
set to −1 and 1, respectively. This input corresponds to a one-dimensional matrix
V ∈ R20×1;

• Sequence (S or 1D-input): 140 features representing protein profile information of
the variation neighbourhood. Considering i as the variant position in the sequence,
we used a window of 3 residues, i.e., [i− 3; i + 3], so to obtain 20× 7 elements, with
the profile information of these 7 positions. This input then corresponds to a sequence
of 7 vectors taken from the protein profile.

A 2D Convolutional layer was applied on the S matrix using a kernel equal to (1, 20)
and stride (1, 1) (reported as Keras-style parameters [35]) and generating a 20× 20 filter
matrix KS. After the convolution, a dot product was performed between the variant vector
V and the resulting 2D convolution matrix, obtaining 7 processed features, computed for
both the direct variation and its reverse. These features were then concatenated with the
variant vector V and used as input to a Differential Siamese Networks [33,34]. Finally, their
outputs were combined in two Lambda layers of “difference/2” and average. To incorpo-
rate the antisymmetric property into the network structure, we designed a specific loss
function that minimizes both the absolute value of the average output and the distance
between the difference output and the true ∆∆G values. The ACDC-NN-Seq architecture
is displayed in Figures 1 and 2.

The choice of an input window of 7 residues, three for each side of the position of
interest, was made to learn the DDGun3D mapping (in the pre-training phase) since we
adopted the same DDGun3D sequence neighborhood. Although we experimented with
some other input window sizes, there was not much difference up to 11 residues, where
we found a performance decrease.
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Figure 1. Constituent modules of ACDC-NN-Seq. CONV2D: a 2D-convolution operation applied
to S (1D inputs) with 20 filters with kernel (1, 20) and stride (1, 1); DOT: dot product is applied to
S’ processed information with the variation encoding vector V; CONCAT: all the 27 features are
concatenated and used as input in a Dense Network (DIFF NET).

Figure 2. Complete ACDC-NN-Seq architecture. The module displayed in Figure 1 is used for both
direct and reverse variations. Given a variation, we provide to the network its coding to the left, and
the coding to the reverse variation to the right. A final layer takes the average and the difference
between the two outputs. The difference computes (∆∆Gdirect − ∆∆Ginverse)/2, which in case of
perfect antisymmetry is exactly equal to ∆∆G. The average computes (∆∆Gdirect + ∆∆Ginverse)/2,
which in case of perfect antisymmetry is equal to 0. The ACDC-NN-Seq outputs are estimations of
the target ∆∆Gs learned during the training phase. The two Siamese networks have shared weights,
both in the convolutional and the dense parts of the network.
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2.4. Pre-Training Phase

Due to the lack of experimental data to train a network from scratch, we first pre-
trained the model on an artificial dataset and then performed transfer learning on real
datasets. The pre-training phase was performed on the unlabeled artificial dataset IvankovD-
DGun, which includes all the possible direct and reverse variations in every sequence
position. We chose to perform the predictions on the IvankovDDGun dataset with a 3D
method to internally encode 3D information from the sequence; DDGun3D was selected
among the other predictors for its near-perfect antisymmetry. The training, validation
and test sets used by DDGun3D include 400,000, 100,000 and 100,000 protein variants,
respectively. The Differential Siamese Network consists of two hidden layers with 128 and
64 units (complete description in Table 2).

Table 2. The final architectures of the Differential Siamese Network before and after transfer learning.
The optimal parameters were selected on a validation set without intersections with the training set.

NN Parameters Before Transfer-Learning After Transfer-Learning

Hidden units 12,864 12,864
Dropout 0.05 0.35
Epochs 45 30
Batch-size 500 150
Optimizer Adam Adam
Loss logcosh + abs logcosh + abs

2.5. Transfer Learning on Experimental Data

After the pre-training phase, we applied transfer learning using S2648 [26] and
Varibench [27] datasets of experimental ∆∆G values, splitting the data and removing
the sequence similarity among training, validation and test sets. Specifically, the weights
of the Convolutional layer were fixed while the Differential Siamese network part was
re-trained selecting the best parameters. To increase the size of the training set, the unla-
beled Ivankov2000 dataset with DDGun3D predictions was also considered. The complete
description of the optimal sets of parameters is shown in Table 2.

2.6. Performance Evaluation

Pearson correlation (indicated by r) and root mean square error (RMSE) were estimated
between the predicted and observed ∆∆G values to evaluate the performance of the
methods. Two scoring indices were adopted to assess the antisymmetric property of ∆∆G
predictors: rd−i and 〈δ〉. rd−i is the Pearson correlation coefficient between the direct and
the corresponding reverse variations:

rd−i =
Cov(∆∆Gdir ,∆∆Ginv)

σdirσinv
(2)

where Cov is the covariance and σ is the standard deviation. 〈δ〉 is the average bias
quantifying the prediction shift:

〈δ〉 =

N
∑

i=1

(
∆∆Gdir

i + ∆∆Ginv
i

)
2N

. (3)

A perfectly antisymmetric method should have rd−i equal to −1 and 〈δ〉 equal to 0.
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3. Results
3.1. Learning 3D Properties on Artificial Data

A proper training of a neural network requires a huge amount of experimental ∆∆G
values that are not currently available; we addressed this problem by performing a pre-
training phase on the artificial dataset IvankovDDGun and then applying a transfer learn-
ing on the experimental datasets S2648 and Varibench, as described in the Materials and
Methods section.

In Table 3, we show the results on the IvankovDDGun test set. It is worth noticing
that the DDGun3D values were computed using the protein structures, while the ACDC-
NN-Seq predictions are only based on sequence information. Thus, this approach obtained
a sequence-based method capable of internally encoding the 3D statistical potentials that
maintain the antisymmetric property.

Table 3. Results on the IvankovDDGun test set: The performance of ACDC-NN-Seq in learning
DDGun3D was measured in terms of Pearson correlation coefficient (r) and root mean square
error (RMSE). The antisymmetry property was assessed in terms of Pearson correlation coefficient
(rd−i) and the bias (〈δ〉) between the predicted values. RMSE and 〈δ〉 are expressed in kcal/mol.
IvankovDDGun (Test) is the test set extracted from the IvankovDDGun artificial dataset.

Dataset
Pearson/RMSE Antisymmetry

Direct Reverse rd−i 〈δ〉

IvankovDDGun (Test) 0.97/0.06 0.97/0.06 −1.0 0.0

3.2. Prediction of the Experimental ∆∆G Values

After training ACDC-NN-Seq on the IvankovDDGun set, we fine-tuned the network
by retraining the last layers on the experimentally-derived ∆∆G values from S2648 and
Varibench through 10-fold cross-validation. In Figure 3 we showed the experimental ∆∆G
values versus the ACDC-NN-Seq predicted ones on Varibench and S2648 datasets both
combined and alone, and for both direct and reverse variations. These results were obtained
in cross-validation as explained in Benevenuta et al. [24]. ADCD-NN-Seq achieved both
consistent performance with the state-of-the-art methods (measured in terms of r and
RMSE) and perfect antisymmetry (rd−i = −1 and 〈δ〉 = 0.0).

We also compared the predictions of both ACDC-NN-Seq and DDGun with their
corresponding stucture-based versions, i.e., ACDC-NN and DDGun3D. Figure 4 reports
the comparison performance (in cross-validation for ACDC-NN and ACDC-NN-Seq) on
the Ssym dataset [10], which was specifically built to assess the antisymmetry and it
contains ∆∆G experimental values for direct and reverse variants. The performance of
ACDC-NN-Seq is balanced and close to those obtained using the protein structures. This
makes ADCD-NN-Seq ideal for genome variant analyses.

In order to evaluate the effect of the neural network design, we compared ACDC-
NN-Seq with a feed-forward neural network (FFNN) trained and optimized in the same
conditions. The structure of the optimized FFNN consists of an input layer of 140 input
neurons (window of 7 residues coded with 20-element vector profiles), a sequence of
hidden layers consisting of (128,64,32,16) neurons, and an output neuron coding for the
∆∆G value. Thus the main difference is due to the anty-symmetric construction of ACDC-
NN-Seq (FFNN Figure 4). FFNN performance is quite good, and the neural networks
learned most of the antisymmetry from the data provided (direct and reverse variations).
However, ACDC-NN-Seq outperforms FFNN both in the prediction task and antisymmetry
reconstructions.
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Figure 3. Performance of ACDC-NN-Seq on predicting ∆∆G for the direct and reverse variations on: (A) Varibench
and S2648 (r = 0.52, RMSE = 1.47 kcal/mol); (B) Varibench alone (r = 0.53, RMSE = 1.7 kcal/mol); (C) S2648 alone
(r = 0.53, RMSE = 1.34 kcal/mol). Direct versus reverse ∆∆G values of (D) Varibench and S2648 variations, (E) Varibench
variations alone, (F) S2648 variations alone, predicted by ACDC-NN-Seq, with a Pearson correlation of rd−i = −1.0 and
〈δ〉 = 0.00 kcal/mol for all three datasets. All the predictions reported in this figure were obtained through a 10-fold
cross-validation with sequence identity <25% among all folds.

Regarding the results presented in Figures 3 and 4, it is worth noticing that the max-
imum achievable Pearson’s correlation is not necessarily equal to 1, as usually thought.
It may be far lower depending on the experimental uncertainty and the ∆∆G distribu-
tions [36,37]. In particular, when considering the different experiments on the same variants
included in the Protherm database or in manually-cleaned datasets, the expected Pearson
upper bound is in the range of 0.70–0.85 [36]. Significantly higher Pearson correlations can
be obtained in small sets or might be indicative of overfitting issues [36].
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Figure 4. Comparison between the structure and sequence-based versions of ACDC-NN, DDGun and
a Feed-Forward Neural Network (FFNN) on the Ssym dataset. (A) Pearson correlation coefficient (r),
where higher is better and (B) root mean squared error (RMSE), where lower is better.

3.3. Comparison with Other Sequence-Based Machine-Learning Methods

As mentioned above, few available methods can predict the effect of the variants on
the protein stability starting from sequence only. We therefore compared ACDC-NN-Seq
on three datasets with the following sequence-based methods: DDGun [14], INPS [13],
I-Mutant2.0 [16], MUpro [17] and the recent SAAFEC-SEQ [15].

The obtained results are reported in Table 4; ACDC-NN-Seq predicts equally well
both direct and reverse variants with nearly perfect antisymmetry (−0.99). ACDC-NN-Seq
performance is higher than the one obtained by INPS, which is the only machine-learning
method proven to be antisymmetric in past tests [22,38].

Table 4. Results on Ssym: The performance on both direct and reverse variants was measured in
terms of Pearson correlation coefficient (r) and root mean square error (RMSE). The antisymmetry
was assessed using the correlation coefficient rd−i (2) and the bias 〈δ〉 (3). RMSE and 〈δ〉 are expressed
in kcal/mol. The results of INPS were taken from Montanucci et al. [14] and Fariselli et al. [13]; the
results of SAAFEC-SEQ and I-mutant2.0 were obtained using their stand-alone code, those of MUpro
were obtained using the webserver available. Only Inps-NoSeqId and ACDN-NN-Seq were trained
in cross-validation addressing the sequence identity issue (sequence similarity <25%).

Method
Pearson/RMSE Antisymmetry

Direct Reverse rd−i 〈δ〉

ACDC-NN-Seq 0.55/1.44 0.55/1.44 −0.99 −0.01
INPS-NoSeqId [22] 0.48/1.42 0.47/1.45 −0.99 −0.06

INPS [13] 0.51/1.42 0.50/1.44 −0.99 −0.04
SAAFEC-SEQ [15] 0.71/1.09 −0.39/2.71 0.58 −1.84

I-Mutant2.0 [16] 0.7/1.12 0.05/2.54 −0.17 −1.01
MUpro [17] 0.79/0.94 0.07/2.51 −0.02 −0.97
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I-Mutant2.0 and MUpro do not respect the antisymmetry property since this issue
was not properly addressed or known at the time the two models were created. However,
it must be noted that both I-Mutant2.0 and MUpro do not use evolutionary information
making them extremely fast predictors, as compared to ACDC-NN-Seq, which requires a
multiple sequence alignment.

Another significant point is that, looking at all the methods reported in Tables 4–6,
only Inps-NoSeqId and all the versions of ACDN-NN were trained in cross-validation
removing the sequence identity (i.e., sequence similarity <25%).

Table 5. Results on myoglobin: Comparison on myoglobin. The INPS, SAAFEC-SEQ and I-
mutant2.0 results were obtained using their stand alone code, those of MUpro were obtained using
the webserver available.

Method
Pearson/RMSE Antisymmetry

Direct Reverse rd−i 〈δ〉

ACDC-NN-Seq 0.56/0.97 0.56/0.97 −1.00 0.00
INPS 0.60/0.99 0.61/0.98 −1.00 0.01

SAAFEC-SEQ 0.63/0.89 0.30/1.63 −0.21 −1.50
I-Mutant2.0 0.56/1.12 0.39/1.71 −0.45 −0.88

MUpro 0.51/0.99 0.35/1.75 −0.17 −0.79

Table 6. Results on p53: Comparison on p53. The INPS, SAAFEC-SEQ and I-mutant2.0 results were
obtained using their stand alone code, those of MUpro were obtained using the webserver available.

Method
Pearson/RMSE Antisymmetry

Direct Reverse rd−i 〈δ〉

ACDC-NN-Seq 0.62/1.62 0.62/1.62 −1.00 0.00
INPS 0.72/1.49 0.70/1.54 −0.99 −0.01

SAAFEC-SEQ 0.52/1.64 −0.18/2.97 0.06 −1.79
I-Mutant2.0 0.35/1.75 0.22/2.81 −0.24 −1.02

MUpro 0.23/1.78 0.04/2.87 0.12 −0.98

3.4. Frataxin CAGI 5 Challenge

The Critical Assessment of Genome Interpretation (CAGI) is a community experi-
ment aimed at fairly assessing the computational methods for genome interpretation [30].
In CAGI 5, data providers measured unfolding free energy of a set of variants with far-UV
circular dichroism and intrinsic fluorescence spectra on Frataxin (FXN), a highly conserved
protein fundamental for the cellular iron homeostasis in both prokaryotes and eukaryotes.
These measurements were used to calculate the change in unfolding free energy between
the variant and wild-type proteins at zero denaturant concentrations (∆∆G). In addition,
the experimental dataset [39], including eight amino acid substitutions, was used to eval-
uate the performance of the web-only tools, based on protein structure information, for
predicting the value of the associated ∆∆G [40]. Here we compare the available machine-
learning sequence-based predictors on the dataset (Table 7), showing the consistency of the
prediction performance of ACDC-NN-Seq.
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Table 7. Results on Frataxin Challenge in CAGI5 [30]. The INPS, SAAFEC-SEQ and I-mutant2.0
results were obtained using their stand alone code, those of MUpro were obtained using the web-
server available.

Method
Pearson/RMSE Antisymmetry

Direct Reverse rd−i 〈δ〉

ACDC-NN-Seq 0.88/2.83 0.88/2.83 −1.00 0.00
INPS 0.65/3.29 0.57/3.38 −0.99 −0.01

SAAFEC-SEQ 0.67/3.3 0.1/4.85 0.2 −1.94
I-Mutant2.0 0.84/2.82 0.53/5.08 −0.74 −1.22

MUpro 0.33/3.6 0.13/4.97 −0.23 −0.45

4. Discussion

Few sequence-based methods are currently available to predict the ∆∆G and only
some of them satisfy the principle of antisymmetry imposed by thermodynamics. Given
the huge amount of sequencing data currently available and their possible applications, we
have proposed a reliable sequence-based predictor that could be applied to a wide range
of biological problems, even when the crystallized protein structures are not available.
Moreover, ACDC-NN-Seq addresses the antisymmetry physical property by exploiting a
specifically-designed loss function which minimizes the absolute difference between the
direct and reverse predictions [24]. We showed that ACDC-NN-Seq compares well with
with the other state-of-the-art sequence-based machine-learning predictors and with some
of the structure-based ones, as shown in Tables 4–7. To avoid overfitting issues due to
sequence similarity, the correct procedure to assess the performance of a method on any
dataset should use variants in proteins which are not similar to those used for the train-
ing [18]. Specifically, this means to remove proteins with a sequence identity >25% between
the training and testing data. In this study, we followed this procedure and we divided
all the datasets used into 10 non-similar subsets during cross-validation. In conclusion,
ACDC-NN-Seq is a sequence-based tool able to show comparable or better performance
with respect to the state-of-the-art methods while preserving perfect thermodynamic anti-
symmetry. In future studies, this method can be extended to predict the ∆∆Gs of multiple
site variations.
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