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Abstract: Large scale genome sequencing allowed the identification of a massive number of genetic
variations, whose impact on human health is still unknown. In this review we analyze, by an in
silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein
stability and function was experimentally determined. We collected a set of 164 variants from 11
proteins to analyze the impact of missense mutations at structural and functional levels, and to assess
the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability
change and pathogenicity. The result of our analysis shows that a combination of experimental data
on protein stability and in silico pathogenicity predictions allowed the identification of a subset
of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the
significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-
driving variants. Our analysis suggests that the integration of experimental and computational
approaches may contribute to evaluate the risk for complex disorders and develop more effective
treatment strategies.

Keywords: protein structure; protein stability; protein function; single amino acid variant; putative
cancer driving variant; free-energy change

1. Introduction

Recent advances in the high-throughput sequencing technologies have led to the detec-
tion of a large amount of genomic data, which are used for generating detailed catalogues
of genetic variations in both diseased and healthy patients [1,2]. Such genetic differences
are at the basis of distinctive traits associated with the susceptibility to specific disease
and/or drug response [3]. The most common genetic differences in the human genome are
single nucleotide polymorphisms (SNPs), which are defined as single nucleotide variations
(SNVs) occurring with a frequency of more than 1% in the population [4,5]. These differ-
ences occur on average once every 300–400 base pairs [6], either in coding or in non-coding
regions (Figure 1). SNVs may affect exon splicing or transcription [3], and are found
more frequently than other types of genetic variations, such as differences in copy number,
insertions, deletions, duplications, and rearrangements. SNVs in protein-coding regions
have received the most attention, in spite of the fact that those regions account for only
about 2% of the total human genome [7]. SNVs in the coding region can be synonymous
if no amino acid change is produced, or non-synonymous if the substitution leads to a
change in the protein sequence. The non-synonymous variants can be further divided into
two categories: missense mutations, which lead to single amino acid changes, or nonsense
mutations, which produce truncated or longer proteins (Figure 1).
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the point of impairing the protein function [8,9] (Figure 1). 

The huge numbers of variants identified over the past twenty years have been 
collected in several databases, the most representative of which are summarized in Table 
1. These databases represent the main source of information for studying the effect of 
protein variants and understanding the genotype/phenotype relationship [10]. 

To maximize the impact of sequence technologies in clinical settings, the scientific 
community is defining standard protocols and guidelines for discriminating disease-
causing variants from nonpathogenic ones [11]. As a consequence, a large variety of 
genetic alterations, including nonsynonymous single nucleotide variants (nsSNVs), were 
found to be associated with monogenic and multigenic diseases [12,13], such as type II 
diabetes mellitus [14], acute lymphoblastic leukemia [15], or cancer [16,17]. Nevertheless, 
for the vast majority of variants, their impact at phenotypic level is still unknown. In this 
framework, the structural and functional analysis of nsSNVs proteins by experimental 
approaches can significantly contribute to their phenotypic characterization [18]. In 
particular, it has been recognized that most disease-causing variants affect the protein 
thermodynamic stability, expressed as the difference in folding free energy between the 
native and the denatured state (ΔGf). The experimental determination of the difference in 
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Figure 1. (a) Single nucleotide variations (SNVs) can occur in the coding or in the non-coding region. SNVs in the coding
region can be synonymous if no amino acid changes are produced, non-synonymous if the single nucleotide substitution
induces changes in the protein sequence. Usually, two types of non-synonymous changes can be described: missense
mutation, that produces an amino acid change in the protein (SAV) and nonsense mutation which produces a truncated or a
longer protein. (b) A single nucleotide substitution can lead to a single amino acid change generating a protein variant with
structural and/or functional alterations as shown in the substitution of the residue Asp183 with a His in the human frataxin
protein (PDB code: 1EKG).

Missense mutations, that generate protein variants with a single amino acid variation
(SAV), are of particular interest in biomedicine, since even just a single amino acid substitu-
tion may induce drastic structural alterations, which compromise the protein stability, or
may induce crucial structural alterations able to perturb binding interfaces, to the point of
impairing the protein function [8,9] (Figure 1).

The huge numbers of variants identified over the past twenty years have been collected
in several databases, the most representative of which are summarized in Table 1. These
databases represent the main source of information for studying the effect of protein
variants and understanding the genotype/phenotype relationship [10].

To maximize the impact of sequence technologies in clinical settings, the scientific com-
munity is defining standard protocols and guidelines for discriminating disease-causing
variants from nonpathogenic ones [11]. As a consequence, a large variety of genetic alter-
ations, including nonsynonymous single nucleotide variants (nsSNVs), were found to be
associated with monogenic and multigenic diseases [12,13], such as type II diabetes melli-
tus [14], acute lymphoblastic leukemia [15], or cancer [16,17]. Nevertheless, for the vast
majority of variants, their impact at phenotypic level is still unknown. In this framework,
the structural and functional analysis of nsSNVs proteins by experimental approaches
can significantly contribute to their phenotypic characterization [18]. In particular, it has
been recognized that most disease-causing variants affect the protein thermodynamic
stability, expressed as the difference in folding free energy between the native and the
denatured state (∆Gf). The experimental determination of the difference in ∆G between
the mutant and wild-type proteins (∆∆Gf) constitutes a first and essential analysis for the
characterization of the protein variants.
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Table 1. Selected list of the databases of single nucleotide variants.

Variant Database Database Description Web Site Reference

ClinVar ClinVar aggregates information about genomic
variation and its relationship to human health.

http://www.ncbi.nlm.nih.gov/clinvar
(accessed on 1 May 2021) [1]

COSMIC Manually curated resource of somatic
mutation of human cancers.

https://cancer.sanger.ac.uk/cosmic
(accessed on 1 May 2021) [19]

dbSNP

Database of human single nucleotide
variations, microsatellites, and small insertions
and deletions for both common variations and

clinical mutations.

http://www.ncbi.nlm.nih.gov/snp
(accessed on 1 May 2021) [20]

UniProt
humsvar

Lists of missense variants annotated in
UniProtKB/Swiss-Prot human entries. The

variant classification should not be considered
for clinical and diagnostic use.

https://www.uniprot.org/docs/humsavar
(accessed on 1 May 2021) [21]

ICGC Data Portal
The ICGC Data Portal provides many tools for

visualizing, querying, and downloading
cancer data.

https://dcc.icgc.org/
(accessed on 1 May 2021) [22]

OMIM Online Catalog of Human Genes and
Genetic Disorders.

http://www.omim.org
(accessed on 1 May 2021) [23]

GDC
The GDC Data Portal provides access to GDC
harmonized data as well as an archive of legacy

data from TCGA and other NCI programs.

https://portal.gdc.cancer.gov/
(accessed on 1 May 2021) [24]

For most of the pathogenic variants, a strongly destabilizing mutation corresponds
to the loss of function, whereas a modest change in stability may generate changes in
protein conformation affecting the binding affinity with interacting molecules (protein,
RNA and DNA). However, the impact of amino acid substitution on protein stability
is an essential information for enabling precision medicine [25]. On such experimental
bases, computational tools, which predict mutation-driven ∆∆G values at high levels
of performance [26], allow a fairly reliable estimate of the variant effects on the large
genomic scale.

In this work, we analyzed a set of 164 cancer-related missense variants, for which
the ∆∆Gs were experimentally determined. On such a dataset, we applied computational
methods for predicting the variants induced change in folding free energy [27], and the
variants pathogenicity [28]. The performance of the predictors was then further assessed
by considering the variants annotation reported in the Cancer Mutation Census database
from COSMIC [19].

2. Genetic Variations and Disease: The Role of Protein Stability in Cancer

Origin, onset, and progression of the neoplastic disease are generally driven by the
accumulation of random genetic changes in cells and tissues, which can then develop inde-
pendence from normal physiological controls due to randomly accumulating mutations,
which disrupt the ability to recognize or respond to host signals [29]. This mechanism,
generally referred to as “somatic evolution”, is part of the transition from a normal into
a cancer cell [29]. While normal cells in metazoans generally lack the ability to evolve,
cancer cells compete with each other, under limited resources, assuming the capacity to
proliferate when stimulated by foreign antigens to maximize their fitness [29,30]. The
elevated turnover of cancer cells, undergoing selective environmental pressure, may con-
tribute to generating the high number of mutations found in tumors. Cancer may indeed
be considered an adaptive evolutionary process [31–33], and most works correspondingly
focus on the study of somatic mutations [16,34]. As shown by Genome Wide Association
Studies (GWAS), many of these cancer-associated genetic variants are not necessarily the

http://www.ncbi.nlm.nih.gov/clinvar
https://cancer.sanger.ac.uk/cosmic
http://www.ncbi.nlm.nih.gov/snp
https://www.uniprot.org/docs/humsavar
https://dcc.icgc.org/
http://www.omim.org
https://portal.gdc.cancer.gov/
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cause of the disease, they simply exist into the general picture of the neoplastic disorder
and may contribute or not to the evolution of the clinical course of the pathology [35].

The accumulation of mutations in somatic cells represents the most likely event,
however, germline mutations are also present in cancer, and they can be associated with
cancer susceptibility, which can be passed on to subsequent generations. Public databases
(Table 1) report a prevalence of putative pathogenic somatic variants [36], with respect
to germline mutations [37,38]. It is reported that about 4.3–17.5% of cancer patients are
characterized by a genetic heritage of germline variants [39–43], especially in the BRCA1,
BRCA2, PTEN, TP53, KRAS, and CDH1 genes. Far greater is the number of somatic
variants identified in oncogenes, or in tumor suppressor genes, as well as in a multitude of
other genes. In particular, it has been recently suggested that somatic mutations may drive
late-onset cancers and germline mutations may contribute to early-onset cancers [44].

Within the huge number of somatic and germline variants present in different can-
cer types, which are reported in online databases, one of the main issues is to identify
those which are drivers (i.e., pathogenic) as opposed to those which are passengers (i.e.,
non-pathogenic). In the COSMIC database, for instance, several criteria enter into such
classification effort, among which the variant frequency of occurrence in genes classified as
oncogenes, or as Tumor Suppressor Genes (TSG), or the variant annotation in the ClinVar
database as ‘pathogenic’ or ‘likely pathogenic’ in cancer-related genes. In turn, genes classi-
fied in COSMIC as oncogenes or TSG are intensely under the loupe for characterizing their
product’s multiple functions and roles within the cell. Alongside such types of evidence,
many computational predicting tools on the pathogenicity of protein variants are available,
which are based on the available experimental data. These data were obtained on a tiny
subset of all existing proteins and variants thereof, because of the time-consuming nature
of the entire experimental process, i.e., mutagenesis, protein expression and purification,
structural and functional characterization, that will never allow an exhaustive experimental
characterization for all the SAVs. Nevertheless, it is evident that expanding the collection
of experimental data will significantly improve the performance levels of the existing
predictors, as well as increase the potential to generate novel and more accurate methods.

In addition to the criteria provided in COSMIC, other features can concur to pre-
dicting the carcinogenicity potential of a missense variant. Among such features, protein
destabilization is a general phenomenon to be considered in all types of disorders. A
structural destabilization may trigger protein misfolding and degradation by the ubiquitin-
proteasome system [45–47], leading to an insufficient cellular amount of the SAV, which can
be the cause of disease [48–51]. For TSG proteins, it has been shown that destabilizing or site-
specific loss-of-function (LoF) variants promote cancer onset and cell proliferation [52,53],
while for oncogene proteins the molecular mechanisms describing the pathogenic effects of
variants are still largely unknown [54]. The main hypothesis is based on the acquisition
of new protein functions associated with specific mutations. The characterization of such
mutations, referred to as gain-of-function (GoF), has proven to be much more complex
compared to LoF variants. This may be due to the combination of several factors. With
respect to LoF, the GoF variants result in sequence and structural changes which may have
regulatory effects or alter the binding to other proteins, to DNA or RNA molecules, or to
other ligands [55]. Although a detailed discussion on the characterization of GoF variants
is out of the scope of this report, in the final part of this review we discussed the case of
five p53 hotspot variants in the DNA binding domain, which a large body of experimental
evidence indicates as GoF [56].

3. Experimental Analysis of Protein Variants in Cancer-Related Genes

Here we present an analysis of missense variants in cancer-related genes, selected from
different databases (Supplementary File S1), for which a ∆∆Gf has been experimentally
determined. The missense variants of our dataset affect tumor suppressor genes, such as
BRCA1 [57] and TP53 [58], or proteins involved in the regulation of cell metabolism, such
as phosphoglycerate kinase 1 (PGK1) and human frataxin (hFXN) [59] as well as proteins
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involved in the epigenetic regulation of gene transcription and master transcriptional
factors, such as bromodomains (BRDs) [60], protein kinase PIM-1, and Protein tyrosine
phosphatase ρ (PTPρ), whose dysregulation can influence different signaling pathways [61],
and peroxisome proliferator receptor γ (PPARγ), a nuclear receptor involved in several
biological processes and in the maintenance of cellular homeostasis [62].

The analysis of the mutation sites in all the protein structures examined indicates that
~30% of them are buried from the solvent. Generally, the consequence of a mutation in
the protein core are more likely to be deleterious, leading to protein misfolding [63]. If the
mutated residue is on the surface of the protein, a minimal rearrangement of the exposed
region may occur, however the global folding of the protein variant is maintained as well
as its expression in the cell [64,65]. In either cases, missense mutations can lead to loss
of function when generating unstable mutant proteins more susceptible to proteolysis,
directly affecting binding affinity [66,67], or protein expression levels [68]. However,
destabilizing mutations may also confer new functions when promoting interactions with
new partners [56] or aggregation [69].

3.1. Effect on Protein Stability

Stability is a fundamental property of a protein [70,71] and it is one of the protein
properties mostly affected by missense mutations [72,73]. About 80% of missense muta-
tions associated with disease result in alteration of protein stability affecting it by several
kcal/mol [72]. Therefore, it becomes essential to annotate whether a single nucleotide
substitution associated to a given disease generates a SAV with a different stability [74].

Missense mutations may increase the conformation energy of the native state, desta-
bilizing it and making the protein more prone to aggregation [69,75], which is a decisive
event in some diseases characterized by aggregates of unfolded proteins [76]. However,
in some cases, a mutation decreases the free energy of the native state, which might also
turn out to be deleterious, if the increased stability limits the conformational changes
important for the functionality of the protein. Generally, most disease-causing mutations
are destabilizing [77–79]: if a mutation affects a stabilizing interaction within a folded
protein, e.g., hydrophobic interactions or a network of hydrogen bonds, the native state
may be destabilized. The loss of stability may be accompanied by loss of function [25],
since most proteins need to be folded for functioning. The degree of destabilization is
elevated for mutations introducing drastic changes, such as charged to neutral, or aromatic
to aliphatic residue, that are often related to diseases. A consequence of the decrease in
SAVs structural stability may be an increased proteolysis, which may lead to an insufficient
amounts of that protein in the cells [80].

Folding studies and stability analysis have been performed on several missense vari-
ants of different proteins, measuring, by thermal or chemical unfolding, the impact of single
amino acid substitution on the difference in Gibbs free energy value between the mutated
and wild-type protein (∆∆Gf). The tumor suppressor p53 is one of the most frequently
mutated proteins found in cancer [52,53,81]. Among the selected mutations of p53, many
of them distributed throughout the core domain have been found to destabilize the protein
between 1.2 and 4.8 kcal/mol (Figure 2i) [82]. Additionally, for BRCA1 (Figure 2a), several
missense mutations were found to be highly destabilizing [83,84], particularly those buried
in the hydrophobic core.
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review are reported. (a) BRCA1 DNA repair associated protein (BRCA1) PDB code: 1JNX, (b) 
Bromodomain 2(1) (BRD) PDB code: 1X0J, (c) Frataxin (hFXN) PDB code: 1EKG, (d) p16 PDB code: 
1DC2, (e) PIM-1 kinase PDB code: 1XWS, (f) Protein tyrosine phosphatase ρ (PTPρ) PDB code: 
2OOQ, (g) Phosphoglycerate kinase 1 (PGK1) PDB code: 2XE7, (h) Peroxisome Proliferator Receptor 
γ (PPARγ) PDB code: 1PRG, (i) Tumor-protein p53 (p53) PDB code: 3Q01. Mutated residues in 
missense variants are depicted in stick. (l) Distribution of SAVs according to the structural position 
of the mutated residues for missense variants (30% of the mutation involved buried residues, 70% 
involved solvent exposed residues). 

A further example of the impact of missense mutations on protein stability is 
represented by the case of hFXN, where 4 out of 8 SAVs show a significant alteration in 
the thermodynamic parameters (Figure 2c, Supplementary File S1). 

In particular, the thermodynamic stability of the hFXN missense variants p.F109L, 
p.Y123S, p.S161I, and p.S181F is decreased in comparison to that of the wild type, whereas 
it is unchanged for p.D104G, where a charged polar residue is mutated into a small, 

Figure 2. Location of SAVs analyzed in this review and their distribution based on the structural
position of the mutated residues. Three-dimensional structure of the proteins analysed in this review
are reported. (a) BRCA1 DNA repair associated protein (BRCA1) PDB code: 1JNX, (b) Bromodomain
2(1) (BRD) PDB code: 1X0J, (c) Frataxin (hFXN) PDB code: 1EKG, (d) p16 PDB code: 1DC2, (e) PIM-1
kinase PDB code: 1XWS, (f) Protein tyrosine phosphatase ρ (PTPρ) PDB code: 2OOQ, (g) Phospho-
glycerate kinase 1 (PGK1) PDB code: 2XE7, (h) Peroxisome Proliferator Receptor γ (PPARγ) PDB
code: 1PRG, (i) Tumor-protein p53 (p53) PDB code: 3Q01. Mutated residues in missense variants
are depicted in stick. (l) Distribution of SAVs according to the structural position of the mutated
residues for missense variants (30% of the mutation involved buried residues, 70% involved solvent
exposed residues).

A further example of the impact of missense mutations on protein stability is repre-
sented by the case of hFXN, where 4 out of 8 SAVs show a significant alteration in the
thermodynamic parameters (Figure 2c, Supplementary File S1).

In particular, the thermodynamic stability of the hFXN missense variants p.F109L,
p.Y123S, p.S161I, and p.S181F is decreased in comparison to that of the wild type, whereas
it is unchanged for p.D104G, where a charged polar residue is mutated into a small,
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uncharged amino acid, for p.S202F, where a polar residue is substituted by a hydrophobic
one, and for p.A107V, where the two involved hydrophobic residues differ by their steric
hindrance [85].

3.2. Effect on Protein Conformation

Most of the SAVs in our dataset, for which protein conformational changes have been
evaluated, e.g., by near-UV Circular Dichroism (CD), or by intrinsic fluorescence changes,
show only minor perturbations in the tertiary structure arrangements. Nevertheless,
in some SAVs, significant differences in protein conformation were observed, as in the
case of p.E135K variant of PIM-1, whose near-UV CD and fluorescence emission spectra
dramatically differ from that of the wild-type [86]. The residue E135 is in helix αD and
forms a hydrogen bond with Q127, which is likely to be important in stabilizing this
helix (Figures 2e and 3a). Notably, a significant reduction in the protein activity was also
observed for p.E135K: the mutated protein showed only about 3% of the protein kinase
activity of the corresponding wild-type, as well as a decrease in activation energy, which
suggests an increase in flexibility with respect to the wild-type counterpart [86].
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Moreover, together with residues K215 and K219, R38 is critical for charge balancing 
of the transition state, directly interacting with the transferring phosphate group in the 
closed conformation of PGK1. Compared to the wild-type structure, the overall structure 
of p.R38M is conserved (Figures 2g and 3b,c), with only minor differences between the 
two: at the level of α-helix 374–382, visible in the p.R38M variant but not in the wild-type, 

Figure 3. Local environment of SAVs. (a) PIM-1: Detailed view of the local structural environment
around the mutated residue E135 [86]; (b,c) PGK1: detail of the 3 phosphoglycerate (3-PG) binding
site in the variant p.R38M (b) in comparison with the wild-type (c) [87]; (d,e) BRCA1: Structural
rearrangements of p.M1775R variant (d) in comparison with the wild-type, 1 and 2 are two solvent
ions (e) [88]; (f) PTPρ: local environment of the mutated residue D927 [77].

The minor conformational changes, observed in SAVs by near-UV CD and fluorescence
emission, can also be observed as minimal changes in their 3D structure. The crystal
structure of PGK1 p.R38M somatic variant [87] is closely similar to that of the corresponding
wild-type and only local differences can be detected. The residue R38 is placed in the N-
terminal 3-phosphoglycerate binding domain, where it is important for substrate binding,
and its correct positioning is required to react with ADP (Figure 3c).

Moreover, together with residues K215 and K219, R38 is critical for charge balancing
of the transition state, directly interacting with the transferring phosphate group in the
closed conformation of PGK1. Compared to the wild-type structure, the overall structure
of p.R38M is conserved (Figures 2g and 3b,c), with only minor differences between the
two: at the level of α-helix 374–382, visible in the p.R38M variant but not in the wild-type,
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and in the position of the β-phosphate group, which in p.R38M points towards the helix
(Figure 3b,c).

Despite the minimal changes in the p.R38M crystal structure, a dramatic effect of
mutation on the kinetic parameters of PGK1 was observed; KM increased from 0.40 to
3.15 mM and the turnover number strongly decreased from 89.8 to 7.2 × 10−6 s−1. This
confirms that local and minimal changes in the protein structure, induced by a missense
mutation, can lead to major alterations in protein function.

The impact of cancer-related missense mutations on protein structure can be dramatic,
as demonstrated by the interesting example of the BRCA1 p.M1775R (Figure 3d). BRCA1 is
involved in the regulation of multiple nuclear functions, including transcription, recombi-
nation, DNA repair, and checkpoint control, and is frequently mutated in cancer [89]. The
p.M1775R variant of the C-terminal domain of BRCA1 (BRCT) cannot interact with histone
deacetylases [90], the DNA helicase BACH1 [91], or with the transcriptional co-repressor
CtIP [92,93]. The residue p.M1775 is largely buried and its substitution with an arginine
residue creates a clustering of three positively charged residues (R1699, R1775 and R1835)
(Figure 3d,e). In the wild-type native structure, R1699 participates in the sole conserved
salt bridge of the inter-BRCT repeat, formed with a pair of carboxyl-terminal BRCT acidic
residues, D1840 and E1836 (Figure 3e). R1835 normally participates in a hydrogen bonding
network with Q1811, thereby helping to orient the β1-α1 loop (Figure 3c). In the p.M1775R
variant, R1699 retains the salt bridge with D1840 but no longer contacts E1836 and instead
coordinates an anion, R1835 rotates away from Q1811 and forms a new salt bridge with
E1836 (Figure 3d) [84,88].

3.3. Effect on Protein Interactions

Approximately 60% of disease-associated SAVs show significant perturbations in the
protein binding sites, resulting in complete loss of interactions and/or function [94–96].
In particular, if the mutated residue is essential in contributing to the interactions with
partners [97–100], the binding affinity, as well as the binding specificity, would be dra-
matically affected, due to geometrical constraints and/or energetic effects [101–104]. For
example, the deleterious mutations E330K and G352R of SMAD4, clustered near the
SMAD4–SMAD3 interaction interface, are associated with juvenile polyposis [105,106].
This observation is in agreement with previous evidence associating the juvenile polyposis
with the disruption of the signaling pathway TGFβ/SMAD which includes the interaction
of SMAD4–SMAD3 [107,108].

Several SAVs exhibit alterations in their binding properties. An interesting example
is represented by the BRDs, small helical interaction modules that specifically recognize
acetylation sites in proteins. BRD2(1) (Figure 2b) and BRD3(2) SAVs show significant
differences in their binding to two inhibitors of pharmacological interest, PFI-1 and JQ1,
that may be related to the location of the missense mutations in proximity of a region
important for the binding to acetylated peptides [109].

3.4. Effect on Protein Catalytic Activity

In the human population, 25% of the known SAVs show a significant modification of
their biological function [76]. This percentage is mostly covered by mutations that occur in
the active sites of enzymes or in the binding pockets of receptors [110,111]. Biochemical
reactions are very sensitive to the precise geometry of the active sites [112–114]. Enzyme
catalysis, however, does not depend just on a restricted number of crucial residues in the
catalytic pocket, but also on several surrounding residues, important for ensuring the
proper positioning of the substrates and cofactors into the active site. Therefore, mutations
that occur on the residues located in the neighborhood of the active site, although not
directly involved in the catalytic event, may also influence the enzyme activity [112,113], as
in the case of PGK1 SAVs, discussed in Section 3.2 (Figure 3b). An interesting example of
changes in enzyme tyrosine phosphatase activity, due to the presence of missense mutations,
is represented by the case of PTPρ (Figure 2f), that belongs to the classical receptor type IIB
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family of protein tyrosine phosphatase and may act as a tumor suppressor [115]. Among
the PTPρ SAVs identified in human cancer tissues, the missense variant p.D927G is almost
completely inactive at 37◦C [77]. This mutation involves a solvent exposed residue, distant
from the catalytic site, and placed in a 4-residues turn between two coils, that connects
different secondary structure regions through hydrogen bonds with three residues (D947,
K930, and E931) (Figure 3f). The highly destabilizing D927G mutation may presumably
alter the main chain flexibility, leading to local disorder, and thus affecting the stabilizing
hydrogen bonds of residues in its proximity [77]. This SAV is an interesting example of the
cumulative effect of a missense mutation on thermodynamic stability and function.

4. Computational Analysis of Protein Variants in Cancer-Related Genes

The large amount of protein variants collected in public databases and the limitations
in the experimental methods stimulated the development of several tools for predicting
their impact on protein stability and their pathogenic effect. Accordingly, early developed
tools focus on the prediction of protein stability change by estimating the variation of free
energy change (∆∆Gf) resulting from an amino acid substitution [116,117]. The majority of
methods, which have been trained on ProTherm database [118] or on manually collected
datasets [26], predict either the value or the sign (positive/negative) of the ∆∆Gf. More
recently, once large databases collecting pathogenic variants were made available, many
binary classifiers have been implemented for predicting the impact of genetic variants on
human health [119–121]. All available methods for predicting the impact of variants on
protein stability or on protein pathogenicity rely on the various features extracted from
protein sequence, structure, and evolutionary information. State-of-the-art methods of
both types are currently used for protein engineering and for variant interpretation. In this
section, we analyze the effect of the protein variants using computational approaches for
predicting protein stability changes and pathogenicity, with the aim of estimating the role
of protein stability on cancer mechanisms and the reliability of computational tools on this
specific task.

4.1. Collection of the Protein Variant Datasets

In this work, we analyze a set of 164 missense variants from 11 proteins to understand
the contribution of protein stability on the insurgence and progression of cancer (Table S1).
Among the 11 proteins, 5 of them are mainly involved in regulation activities (BRD2, BRD3,
BRD4, p16, and PPARγ), 4 have catalytic activities (PIM1, PGK1, FXN, and PTPρ) while the
remaining 2 (p53 and BRCA1) are involved in many biological processes. The set collects
all protein variants, for which the folding ∆∆G value was experimentally determined
and whose genes are reported in the COSMIC database, either as Tier 1 genes, or with
putative cancer-driving evidence. The folding ∆∆Gf is calculated as the difference between
the folding ∆G of the mutant and wild-type proteins (∆∆Gf = ∆Gf

mut − ∆Gf
wt), i.e., it is

positive for destabilizing variants. When available, the variation of the melting temperature
(∆Tm = Tm

mut − Tm
wt) was also collected. The distributions of the ∆∆Gf and ∆Tm values

are plotted in Figure 4a. The protein mutants are mapped on unique protein structures
except in the case of p53, for which the DNA binding and oligomerization domains are
considered separately. A subset of 97 variants from 9 proteins is obtained by matching our
dataset with the data collected by the Cancer Mutation Census (CMC) project. This subset
is composed of 24 putative cancer-driving variants annotated as “Tier 1–3” and 63 putative
benign variants annotated as “Other”.
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Figure 4. (a) Distributions of the of ∆∆Gf and ∆Tm on the dataset of 164 protein variants. ∆Tm is available only for 73 of
them. (b) Comparison of the distributions of the COSMIC tumor samples for the putative cancer-driving variants (Tiers 1–3)
and the benign variants (Others) annotated by the Cancer Mutation Census project.

In Figure 4b we compared the distribution of the COSMIC tumor samples in which
the putative cancer-driving variants (PCVs) and putative benign variants were detected.
The somatic variants annotated by the CMC project are found in different tumor tissues.
In particular, the hotspot mutants in the p53 DNA-binding region are detected in tumors
from more than 30 tissues. The final list of the variants with their relative annotations and
features are reported in Supplementary File S1.

4.2. Analysis of the Protein Variants

In this review we verified the possibility of using the available methods for predicting
the impact of missense variants to identify key functional residues of the protein. We first
evaluated the performance of a state-of-the-art method (FoldX [27]) in the prediction of
∆∆Gf resulting from an amino acid substitution. In the second step of the analysis, we
predicted the pathogenicity of the selected variants to identify putative cancer-driving
variants. For this task we used Meta-SNP [28], a meta prediction algorithm combining the
output of 4 methods, namely PhD-SNP [122], PANTHER [123], SIFT [124], and SNAP [125].
The Meta-SNP output is considered as a proxy for predicting PCVs as reported in the
Cancer Mutation Census (https://cancer.sanger.ac.uk/cmc (accessed on 1 May 2021)). For
optimizing the prediction process on our set of cancer-associated genes we performed a
5-fold cross-validation procedure to select the best classification threshold. For a better
characterization of the results, we also evaluated the importance of protein structure and
evolutionary information in the detection of putative cancer-driving variants.

4.3. Predicting the Folding Free Energy Change of the Protein Variants

For each mutant in our dataset, we predicted the variation of the folding free energy
(∆∆Gf) using FoldX, which is one of the most accurate methods for such a task [79]. For
each mutant, we averaged the FoldX predictions on 10 models of the mutated structure.
The predictions on the whole set of mutants are reported in Supplementary File S1. We then
compared the predicted and the experimental ∆∆Gf values and calculated the performance
on the set of variants, either grouped by proteins or on the whole set. In particular, we
calculated three types of correlation (Pearson, Spermann, Kendall-Tau), and two error
estimates, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The
results in Table S2 show that, on the whole set of 164 variants, FoldX achieves a Pearson
correlation coefficient (rP) of 0.50 and a RMSE of 2.1 kcal/mol. This result can be improved
by removing the variant p.G1788V of BRCA1 from the dataset. For that variant, FoldX
predicts a ∆∆Gf of 15.2 kcal/mol, which is much higher than all other predicted values.
Such a large predicted ∆∆G value is likely due to a limitation of FoldX, which in this case
fails to identify a stable conformation of the protein mutant. After removing p.G1788V from

https://cancer.sanger.ac.uk/cmc
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the dataset, the rP increased to 0.56 and the RMSE decreased to 1.8 kcal/mol. On average
we observed that the predicted ∆∆G values returned by FoldX tend to be larger than the
experimental values. This behavior is probably due to the implementation of the FoldX
algorithm which predicts the structure of the mutant protein only considering different
rotamers of the amino acid side chains. Such a process might limit the ability of the tool to
identify more stable conformations that could be obtained through the rearrangement of
the backbone.

Further analysis was performed after grouping the variants by proteins and calculat-
ing the performance on the resulting protein subsets. By doing so, we observed for some
proteins (both domains of p53, hFXN, PGK1, and PTPρ) a rP > 0.58. For other proteins
(BRDs, PIM-1, and p16) with a smaller number of mutants (≤10), we observed lower or neg-
ative correlation coefficients. The scatter plots, showing the correlation between predicted
and experimental ∆∆Gf values for the whole set of proteins, or for the proteins with the
highest number of mutants (p53 and BRCA1), are shown in Figure 5. Another interesting
analysis consists in the prediction of highly destabilizing variants (∆∆Gf > 2 kcal/mol). In
this case, we have used FoldX as a binary classifier, optimizing a threshold on its output.
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Figure 5. Scatter plot for predicted vs experimental ∆∆Gf values. (a) fitting on the whole set of 164 variants (red) and
after removing the outlier BRCA1 p.G1788V (black). (b) Similar analysis performed on the whole set of variants in BRCA1
(red) and after removing BRCA1 p.G1788V variant (black). (c,d) fitting on the subset of variants in p53 core (2OCJ) and
oligomeric (3SAK) domains, respectively. r: Pearson correlation coefficient. RMSE: Root Mean Square Error.

The optimization procedure, based on balancing the true positive and true negative
rates, shows that FoldX can achieve an overall accuracy of 77% and a Matthews Correlation
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Coefficient (MCC) of 0.55 when a prediction threshold of ~1.2 kcal/mol is considered
for the whole set of 164 variants. This method shows a good performance also when
considering protein-specific thresholds. Indeed, for the subset of proteins with the highest
number of mutants (p53 and BRCA1), the performance in the classification task reached
MCC = 0.78 and AUC (Area Under the ROC curve) = 0.95 for the DNA binding domain
of p53, or MCC = 0.67 and AUC = 0.90 for BRCA1. All performance measures in the
classification task are summarized in Table S3.

In general, our analysis confirms that, on average, the predicted and experimental
∆∆Gf correlate well, and that the FoldX prediction can be used to estimate the impact of
mutations of protein stability, in spite of the fact that the prediction error still remains
~2.0 kcal/mol. To partially address this limitation, the methods for ∆∆Gf prediction can be
used as binary classifiers to detect highly destabilizing protein variants.

4.4. Predicting the Pathogenicity of Protein Variants

In the last decade, several methods have been developed for predicting the pathogenic-
ity of variants. In general, those approaches are binary classifiers, based on the analysis
of evolutionary conservation. The idea behind these tools is based on the observation
that mutations occurring in highly conserved regions of the protein are more likely to be
pathogenic than mutations in variable regions. In the case of cancer-associated variants,
the validation of the predictive methods is a difficult task due to the lack of curated sets of
annotated variants. To address this issue, the COSMIC curators are annotating the somatic
mutations in the Cancer Mutation Census (CMC) dataset [19]. Currently, the CMC contains
~3 million missense variants, only ~0.1% of which were curated. Using such annotation, we
analyzed the prediction of Meta-SNP, an algorithm combining the output of 4 methods, on
our dataset. Initially, we analyzed the relationship between the experimental ∆∆Gf and the
variant pathogenicity score returned by Meta-SNP, to test its performance in the detection
of highly destabilizing variants (∆∆Gf > 2 kcal/mol). Setting the optimized classification
threshold to 0.66, we found that Meta-SNP reaches an accuracy of 73% and a Pearson
correlation coefficient of 0.40 in the classification of highly destabilizing variants. We also
estimated the performance of Meta-SNP in the prediction of putative cancer-driving vari-
ants (PCVs), assuming that missense variants, annotated as “Other” in the CMC database,
can be classified as benign and variants in CMC annotated as classes 1–3 (Tier 1–3) can be
considered putative cancer-driving variants (PCVs). For a more stringent test we calculated
the performance of Meta-SNP by removing from the dataset 15 mutations used for the
training of the method. Our results show that, for the subset of 82 variants annotated in
CMC, by using a classification threshold of 0.71, Meta-SNP is able to predict PCVs with
77% accuracy and a Matthews correlation coefficient of 0.37.

The high fraction of false positives in the prediction of highly destabilizing variants
may indicate the presence of pathogenicity mechanisms alternative to the loss of stability,
while the high rate of false positives in the prediction of PCVs can be due to incorrect
and/or incomplete protein variants annotation.

Although the Meta-SNP predictions result in a high fraction of false positive, the
PCVs, annotated with 1 to 3 in the CMC database, are enriched in the variants with folding
∆∆Gf > 2 kcal/mol with respect to the subset of CMC variant annotated as “Other”. Indeed,
the relative p-value calculated by the Fisher test is <0.03.

Furthermore, the comparison of the distributions of the Meta-SNP output for Tier
1–3 and “Other” variants reveals a significant difference. The average values of the distri-
butions of Meta-SNP outputs for Tier 1–3 and “Other” variants are 0.71 and 0.47, respec-
tively. This difference is statistically significant, corresponding to a Kolmogorov-Smirnov
p-value < 10−4.

Finally, we also tested the performance of FoldX in predicting PCVs. Our analysis
revealed that, selecting a predicted ∆∆Gf threshold of 2.7 kcal/mol, FoldX is able to identify
Tier 1–3 variants with 73% overall accuracy and a Matthews correlation coefficient of 0.33.
The comparison of the results shows that a predictor of putative pathogenic variants (Meta-
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SNP) is performing better than a method designed to predict folding ∆∆Gf (FoldX) in the
detection of PCVs.

The performances of Meta-SNP and FoldX in the prediction of destabilizing and
putative cancer-driving variants are summarized in Table S4.

4.5. Analysis of the Prediction on the Basis of the Amino Acid Accessibility and Conservation

In the previous sections, we have shown that protein stability of cancer-related genes
can be predicted with a good level of confidence using dedicated computational tools like
FoldX. We have also observed that the pathogenicity score, calculated through a consensus
method, correlates with protein stability data and with phenotypic data. Nevertheless,
the prediction of PCVs, starting from protein stability predictions, is a more complex task.
To this end, more experimental data on the stability of cancer proteins and their variants,
and a higher level of curation of the existing databases on cancer protein variants would
be needed. As an in-silico alternative for estimating the impact of protein variants on the
stability and phenotypic levels, we used Meta-SNP, which is one of the state-of-the-art
methods that best predict the protein variant pathogenic potential. To better analyze
the results obtained by Meta-SNP, we calculated the distributions of solvent accessibility
and conservation scores of the wild-type residues for the subset of highly destabilizing
and PCVs.

In detail, for each mutated site we calculated the relative solvent accessibility (RSA) of
the mutated residues and the frequency of the wild-type residue in the multiple sequence
alignment (fWT) of possible homologs of the mutated protein.

As described in supplementary materials, the RSA was calculated by normalizing the
solvent accessibility calculated with the DSSP program [126] and the fWT was returned as
part of the output of the Meta-SNP server (http://snps.biofold.org/meta-snp, accessed on
1 May 2021). In the first part of our analysis, we compared the RSA values for the subset of
highly destabilizing variants (∆∆G > 2.0 kcal/mol) and the remaining ones, showing that
for RSA ≤ 0.2 there is little overlap between the two distributions (Figure 6a). In the same
range of RSA (Figure 6b), the PCVs (Tiers 1–3) can be easily discriminated from benign
ones (“Other”). In both cases, using the Kolmogorov-Smirnov test to estimate the statistical
difference between the two subsets in Figs. 6a and 6b, we obtained p-values < 10−3. In
particular, Figure 6b shows that the majority of PCVs (~58%) are occurring in buried regions
(RSA ≤ 0.2), while ~75% of putative benign variants are in exposed regions (RSA > 0.2).
The fraction of PCVs in exposed regions, which we found in our dataset, is higher than the
value reported for pathogenic variants [63], nevertheless, due to the reduced size of our
dataset, such a difference is not statistically significant.

In the second part of this analysis, different results are observed when the distributions
of fWT are compared. Figure 6c shows that conservation is not a strong feature for the
classification of highly destabilizing variants, while it is essential for the prediction of
PCVs. Indeed, for fWT > 50% the distributions of Tier 1–3 and “Other” variants have little
overlap (Figure 6d). The comparison between the results in Figure 6c,d indicates that
destabilization and conservation may indeed serve the pathogenicity prediction task as
reciprocally integrating features [25].

A further interesting analysis can be performed by considering the distribution in two
dimensions of the RSA and fWT together for Tiers 1–3 and “Other” variants. In Figure 7a
we observed an enrichment for Tiers 1–3 variants in the buried (RSA < 20%) and conserved
residues (fWT > 50%), with a corresponding p-value of 3 × 10−6, obtained by considering a
binomial distribution with a success probability of 0.247. On the opposite side of the plot
(RSA ≥ 20% and fWT ≤ 50%), we observed a depletion of PCVs (p-value = 0.02). Finally,
we performed a similar analysis by combining the experimental ∆∆Gf with the Meta-SNP
predictions (Figure 7b).

http://snps.biofold.org/meta-snp
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Figure 6. Distributions of the Relative Solvent Accessibility (RSA) and frequency of the wild-type
residue (fwt) in the multiple sequences of homolog proteins. The distributions of RSA and fwt

calculated for the subsets of 53 highly destabilizing variants (∆∆Gf > 2.0 kcal/mol) compared to
the remaining 111 variants (∆∆Gf ≤ 2.0 kcal/mol) are shown in panels (a,c). In panels (b,d) the
same distributions are plotted for the subsets of 24 putative cancer-driving (Tier 1–3) or 73 benign
(‘Other’) variants.
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Figure 7. Enrichment and depletion of putative cancer-driving variants (Tier 1–3) in different subgroups. (a) Enrichment of
Tier 1–3 variants in mutated sites with Relative Solvent Accessibility ≤20% and frequency of the wild-type residue > 50%
(light red). (b) Enrichment of Tier 1–3 variants in the subset of mutants with experimental ∆∆Gf > 2.0 kcal/mol and
Meta-SNP output >0.5 (light red). In both cases, the opposite regions (light blue) are depleted of Tier 1–3 variants. In
(a,b), the hotspot mutants R175, R248, R249, R273, and R282 are highlighted with black circles. (c) Hotspot sites in the p53
structure in interaction with DNA (PDB:1TUP). Residues R248 and R273 interact with DNA. Residues R175, R249, and R282
are likely to stabilize the protein structure by forming salt bridge interactions with D162, E171, and E286, respectively.

If we considered the subset of highly destabilizing (∆∆Gf > 2.0 kcal/mol) and pre-
dicted pathogenic (Meta-SNP output > 0.5) variants, we found an enrichment in Tier 1–3
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variants with corresponding p-value of 0.01. On the opposite side of the plot, we observed
a depletion of Tier 1–3 variants, again with a p-value of 0.01.

These observations confirm the hypothesis that relative solvent accessibility and amino
acid conservation are important features for predicting the impact of amino acid substitu-
tion in terms of protein stability and pathogenicity. Furthermore, the combination of the
experimental ∆∆Gf and the predicted pathogenicity of variants allows to select a subset of
variants with a significantly high probability of having a deleterious phenotypic effect.

In particular, focusing on a subset of five hotspot sites of p53 [127,128], we observed
that R248 and R273 are directly interacting with the DNA, in agreement with their high RSA,
while R175, R249, and R282 (low RSA) are surrounding the DNA binding site (Figure 7c).
These structural aspects, combined with our predictions, support the hypothesis that the
p.R248Q and p.R273H variants (with high pathogenicity score but low ∆∆Gf) have a direct
impact on the protein function of DNA-interaction, while p.R175H and p.R282W (with both
high pathogenicity score and high ∆∆Gf) destabilize the p53 structure. An intermediate
case is p.R249S, which shows a variation of folding free energy of ~2 kcal/mol and a low
RSA. Similar to R175 and R282, the presence of an oppositely charged residue (E171) in the
proximity of R249 suggests that a mutation in this site can indeed reduce the stability of
p53, due to a missing salt bridge interaction. Although a significant difference between
predicted and experimental ∆∆Gf values (RMSE = 3.2 kcal/mol) is observed for the five
hotspots, similar results are obtained when combining the Meta-SNP output with the
predicted ∆∆Gf (Figure S1). Our analysis can be compared with the experimental data
on DNA-binding affinity of the p53 mutants [82]. The data show that among the five
hotspots cancer mutants shown in Figure 7, the three of them with low impact on p53
stability (p.R248Q, p.R249S, and p.R273H with ∆∆Gf ≤ 2.0 kcal/mol) had no detectable
binding affinity with the gadd45 promoter DNA (0% with respect to the wild type). This
observation supports the hypothesis that protein–DNA interactions may play an important
role in the cancer-inducing mechanism of the mutated p53. By analogy, a similar case
of compromised protein–DNA or protein–protein interactions might turn out to hold for
other cancer-associated mutants, which might not be in the ‘highly destabilizing’ category.
The above observation is also in agreement with the possible roles hotspots cancer p53
mutants are considered to play as gain-of-function effectors [127,128], not only for the
‘contact’ mutants p.R248Q and p.R273H, but also for the ‘conformational’ mutants p.R175H,
p.R249S, and p.R282W, since an altered p53 binding energy landscape can shift the mutated
cells to different functionalities. Furthermore, the data shown in Figure 7 are consistent
with the fact that also destabilizing variants can have gain-of-function characteristics,
possibly through altered protein–protein interactions [56].

5. Conclusions and Future Perspectives

Single nucleotide variations in DNA, resulting in amino acid substitutions (SAVs),
can lead to changes in the protein stability [129,130] or to alterations at the structural
level, which may have an influence on protein function. In the present work, we have
focused our analysis on those SAVs occurring in cancer-related genes and reported in
COSMIC, for which their impact on protein stability had been experimentally determined.
Cancer is a complex multigenic disease, in which more than one SAV, occurring on different
proteins, may act in coordination. For a deeper understanding of the mechanisms of cancer
at a molecular level, leading to the identification of personalized therapeutic strategies,
a detailed analysis of the properties of the variants reported in the publicly available
databases is essential. Experimental studies on the effects of missense mutations on protein
conformation, stability, function, and interactions have been carried out in detail just on a
limited number of nsSNVs, e.g., p53 and BRCA1, and few three-dimensional structures
of protein variants are available in comparison with the large amount of SAVs reported
in COSMIC. It is only through an intensified dialogue between the experimental and the
computational efforts that one can expect to contribute ever more relevant information
for diagnosis. These studies can be helpful in following drug discovery design projects



Int. J. Mol. Sci. 2021, 22, 5416 16 of 22

and pharmacological studies for searching the most useful treatment, to ensure the most
precise patient care [131,132].

In this context, the computational methods, developed for predicting the effect of vari-
ants on protein stability and their pathogenicity, represent valuable tools to narrow down
the number of expensive and time-consuming experimental procedures to be employed [10].
The role of experimental biochemical assays, in combination with computational analysis,
is important for the selection of representative case studies, aimed at providing a more
complete picture of the molecular mechanisms of cancer, and for a better customization of
the available tools. In this sense, the Critical Assessment of Genome Interpretation (CAGI)
represents a good example of how a common task framework can help to reach significant
gains in the prediction of the phenotypic impacts of genomic variations [133]. In 2019,
we proposed a new computing experiment, focusing on the prediction of the variation of
the free energy change induced by hFXN missense variants [85]. The assessment of the
predictions submitted for the hFXN, and other challenges focusing on clinical applications,
confirmed that the state-of-the-art methods for predicting the variation of protein stability
change upon mutation are achieving a good level of performance, while methods for
predicting pathogenic variants reached a good level of performance on challenges focusing
on possible clinical applications [134–136]. The global effects of missense mutations on
proteins can be highlighted from the analysis of the thermodynamic parameters of stability,
distinguishing neutral mutations from destabilizing or stabilizing ones. Accordingly, we
assessed the performances of two state-of-the-art methods (FoldX and Meta-SNP) in the
prediction of the impact of missense mutation on protein stability and their implication in
cancer. After an optimization process, based on the selection of appropriate classification
thresholds, the computing methods achieved good performances in both tasks. Our analy-
sis shows that the combination of methods for predicting ∆∆Gf or pathogenicity is a good
strategy for estimating the impact of variants at structural and functional levels. Indeed,
the enrichment of Tier 1–3 variants in the subset of highly destabilizing and pathogenic
variants is consistent with the most common pathogenic mechanism being the destabi-
lization of the structure, which results in loss of function. Nevertheless, the possibility
of alternative pathogenic mechanisms based on gain of function, and the presence of a
not negligible number of false positives, requires a more in-depth analysis of the main
structural and evolutionary features which represent the basis of our predictions. Based
on the observation that a large fraction of Tier 1–3 variants corresponds to conserved sites
in the core of the protein, it would be as much informative to focus both on the role of
those highly conserved residues which do occur on the exposed regions of the protein,
and on the putative destabilizing variants found in non-conserved regions. The first group
of variants may affect functional sites important for protein–protein and protein–DNA
interactions. The second class of mutants may have a significant impact on the local-
to-global structure of the protein, generating, or shifting the equilibrium towards, new
functional conformations. For example, a plethora of evidence confirms that mutant p53
proteins not only lose their tumor-suppressive function and acquire dominant-negative
activities, but also gain new oncogenic properties [137] by affecting the transcription of
various genes, as well as by protein–protein interactions with transcription factors and
other effectors [56]. A recent review emphasizes the cellular existence of p53 as a highly
complex and dynamic conformational ensemble, and reports experimental evidence on
mutations shown to induce proteoforms of p53 [138], among which the highly destabilizing
hotspot mutations of Arg337 in the oligomerization domain [139,140]. Nevertheless, the
limited experimental data on alternative functional conformations does not allow to draw
a general conclusion [141].

In the complex scenario of cancer onset, progression, and invasion, a single amino
acid substitution may be plausibly considered as an adaptive attempt by nature, and
chance, to produce a more functional protein in the neoplastic disorder. Cancer may
be considered an adaptive evolutionary process [32,142], in which the accumulation of
random genetic changes in cells and tissues is mainly driven by the necessity of cells to
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proliferate maximizing fitness based on environmental circumstances [29]. In this regard, it
should be noted that few missense mutations in cancer-related proteins result in stabilizing
effects on the native protein or are neutral, not affecting protein stability. Many of the
SAVs studied, indeed, show changes of their tertiary arrangements with local alterations
that do not induce large conformational changes in the protein 3D structure. These local
changes can lead to differences in protein flexibility that may possibly influence the protein
interactions network, particularly when the point mutation involves a solvent exposed
residue. The tertiary structure changes of SAVs may alter the binding to natural partners
and perturb the interactions with ligands and/or inhibitors. Structural analysis in solution
combined with 3D structure analysis of missense variants may help to get a deeper insight
into the molecular mechanism underlying complex diseases. This information regarding
cancer-related genes may also provide useful clues for the identification of diagnostic
markers and for optimization of personalized treatments, particularly for those variants
not accompanied by significant changes in stability. For a genomic and molecular profiling
of the individual, the research in biomedicine might increasingly focus on the integration of
experimental and computational techniques, leading to the development of more effective
treatment strategies.
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