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Abstract
Predicting protein stability changes upon single-point mutations is crucial in
computational biology, with applications in drug design, enzyme engineer-
ing, and understanding disease mechanisms. While deep-learning
approaches have emerged, many remain inaccessible for routine use. In
contrast, potential-like methods, including deep-learning-based ones, are
faster, user-friendly, and effective in estimating stability changes. However,
most of them approximate Gibbs free-energy differences without accounting
for the free-energy changes of the unfolded state, violating mass balance
and potentially reducing accuracy. Here, we show that incorporating mass
balance as a first approximation of the unfolded state significantly improves
potential-like methods. While many machine-learning models implicitly or
explicitly use mass balance, our findings suggest that a more accurate
unfolded-state representation could further enhance stability change
predictions.

KEYWORDS
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1 | INTRODUCTION

Predicting protein stability changes upon single-point
mutations is a longstanding challenge in computational
biology (Benevenuta et al., 2022; Pucci et al., 2022;
Sanavia et al., 2020), with significant implications in drug
design, enzyme engineering, and understanding disease
mechanisms (Thomas et al., 1995). Protein stability is typ-
ically quantified by measuring the Gibbs free energy
change (ΔG) between the folded and unfolded states

ΔG¼GF �GU : ð1Þ

However, mutations can dramatically alter this deli-
cate balance. Destabilizing mutations are often linked
to diseases (Martelli et al., 2016) such as cancer
(Petrosino et al., 2021), while stabilizing mutations can

enhance protein function and resilience, especially in
industrial and therapeutic settings (Coluzza, 2017; Kor-
endovych & DeGrado, 2020).

From the experimental point of view, the measure of
interest is the difference of the unfolding free energy
between the mutated and wild-type proteins (ΔΔG), cal-
culated as

ΔΔG¼ GF mð Þ�GF wð Þð Þ� GU mð Þ�GU wð Þð Þ, ð2Þ

where m and w stand for mutant and wild-type
(Figure 1).

PF wð ÞþPU mð Þ⇌PF mð ÞþPU wð Þ, ð3Þ

where P represents the concentration of the protein
either in the wild-type (w) or mutant (m) forms, both in
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the folded (F) or unfolded (U) states. It can be noticed
that this kind of “reaction” corresponds to that used in
Free-Energy Perturbation (FEP) calculations
(York, 2023; Zwanzig, 1954), a widely used method to
calculate ΔG differences in molecular modeling and
drug design.

The folding free energy difference between two pro-
tein variants depends on both the folded and unfolded
states of each sequence. Studies using molecular
dynamics, based on Alchemical Free Energy Perturba-
tion (Kurniawan & Ishida, 2023; York, 2023), have dem-
onstrated that accurately modeling the unfolded state is
crucial for achieving high predictive performance
(Kurniawan & Ishida, 2023), though such approaches
require computationally expensive methods. Similar
statistical-mechanics approaches describing the contri-
bution of the unfolded state have been presented by
Bastolla and coworkers (Arenas et al., 2020;
Bastolla, 2014; Minning et al., 2013).

In recent years, deep learning-based approaches
have significantly advanced the field of protein stability
prediction. Despite their success, these models require
substantial computational resources and are some-
times inaccessible for routine or high-throughput appli-
cations (Sanavia et al., 2020).

In contrast, potential-like methods, such as those
utilizing empirical energy functions like FoldX
(Schymkowitz et al., 2005) structure-based protein-
language models such as ProteinMPNN (Dauparas
et al., 2022) and ESM-IF1 (Hsu et al., 2022), and

methods that directly address the calculation of ΔΔG
upon mutation using deep neural networks, such as
Pythia (Sun et al., 2025), offer faster and more accessi-
ble alternatives. These methods estimate stability
changes by calculating either atomistic interactions or
the likelihood of an amino acid in a given structural con-
text of the protein. Pythia, for example, employs a self-
supervised learning framework to perform zero-shot
ΔΔG predictions across a large protein sequence
space, offering ultrafast computational performance.

However, one fundamental limitation of the
potential-like methods is their simplified approach to
Gibbs free energy calculations, where only the folded
states GF xð Þf g (i.e., the protein structure) are consid-
ered. This simplification leads to the following approxi-
mation for the mutant (m) and wild-type (w):

ΔΔGapprox ¼ GF mð Þ�GF wð Þð Þ: ð4Þ

Under this approximation, the second term of
Equation (2), describing the ΔG between the unfolded
states of the two protein sequences, is typically
neglected due to the difficulty of properly defining and
measuring it. However, this approximation might not
always hold, since, for example, different inter-residue
interactions and degrees of freedom between wild-type
and mutant might persist in the unfolded state. An addi-
tional contribution might be the difference in free energy
of solvation for the amino acids involved in the mutation
(Rose et al., 1985). It should also be observed that the
ΔΔG expression is a difference of two terms, and
neglecting one of them could lead to significant devia-
tions from the correct solution. Furthermore, neglecting
this second term also implicitly means violating the mass
conservation for the process, as Gibbs free energy is
defined for closed systems where mass is conserved.

Considering the extreme flexibility of the neural-
networks in implicitly modeling all terms of Equation (1),
the approximation of ΔG between the unfolded states of
the two protein sequences equal to zero should not
affect, in principle, models that explicitly incorporate the
protein-sequence composition change among their input
features (e.g., I-mutant [Capriotti et al., 2005], ACDC-NN
[Pancotti et al., 2021], Stability Oracle [Diaz et al., 2024]).
However, as previously mentioned, this approximation
might become relevant for models that do not compen-
sate for it, such as most “potential-like” methods.

To address this gap, we propose a novel correction
that incorporates “mass balance” back into potential-
like scoring methods, improving the accuracy of protein
stability predictions without compromising their usually
high computational efficiency. By retrofitting these
potential-like models with this extra term, which we call
mass-balance correction (MBC), our approach adjusts
for a key flaw in the evaluation of ΔΔG, significantly
enhancing the prediction accuracy without any repara-
meterization of the original model.

F I GURE 1 Thermodynamics of the variation of the folding free
energy upon single point mutation, considering mutated (m) and wild-
type (w) states. In box [1] the relation between probability and free
energy of folding is reported. In box [2], the correct measure of the
difference of the unfolding free energy between the mutated and wild-
type proteins, considering the difference between the folded and
unfolded states is reported (first equation); however, some potential-
like methods approximate it using the difference of the folding state
free energy, neglecting the effect of the unfolded states (box [2],
second equation). A first approximation can be obtained by adding a
mass-balance correction (also a kind of solvation term) to the folding
free energy difference (box [2], third equation).
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Furthermore, the obtained performance for some of
these modified methods is comparable, or even better,
to those of state-of-the-art models such as Stability
Oracle, providing a valuable tool for researchers need-
ing rapid stability assessments.

2 | RESULTS

2.1 | Incorporating mass-balance
information as a first approximation of the
unfolded state

We first evaluated the performance of three different
potential-like methods, representing three
different approaches to ΔΔG calculation, with and with-
out the MBC correction, and then compared them to
the results of the DDGun3D (Montanucci et al., 2019;
Montanucci et al., 2022) “untrained” benchmark model.
DDGun3D explicitly incorporates a form of MBC by
considering the hydrophobicity difference between
mutated and wild-type residues, establishing it as a
suitable reference benchmark. We also derived the
data-driven MBC term, referred to as ddMBC_only
hereafter, by fitting it to the training set using ridge
regression implemented in Scikit-learn (Pedregosa
et al., 2011) with default parameters.

The MBC(dd) term was then compared with the
Kyte–Doolittle (Kyte & Doolittle, 1982) and Rose (Rose
et al., 1985) scales for scoring the difference of hydro-
phobicity and solvation, respectively, as first approxima-
tions of the unfolded state. Additionally, we included a

comparison with the Stability Oracle model, a recent
state-of-the-art deep learning-based method. We used
the S461 dataset (Hern�andez et al., 2023) as the test set
to perform comparisons (see Table S1 and Figure 2).

The three potential-like methods considered are:

1. ESM-IF1, a large protein-language model (PLM)
trained to predict a protein sequence likelihood from
its backbone atom coordinates.

2. FoldX, a widely-used all-atom knowledge-based
potential for fast and quantitative estimation of the
importance of the interactions contributing to
the stability of proteins.

3. Pythia, a self-supervised graph neural network tailored
for zero-shot ΔΔG predictions, large-scale residue
scanning, andmissing-residue probability prediction.

On the S461 test set, all methods showed visible
performance boosts, with increased Pearson correla-
tion coefficients (PCC) compared to the original
methods (for more detail see Table S2) and with
Pythia/MBC(dd) being the top performer.

Although we used PDB structures to train our
model, we observed that the performance of both the
baseline ESM-IF1 and Pythia models noticeably
depends on the type of structure used. Namely, the
performance of both of these methods is higher if
AlphaFold (Jumper et al., 2021) models are used
instead of experimental x-ray structures from PDB. This
is probably due to the way these methods have been
parameterized: for both ESM-IF1 and Pythia training
sets, the percentage of AlphaFold structure exceeds

F I GURE 2 Comparison of Pearson
correlation coefficient obtained on S461
dataset between the original method (pink
bar) and its adjusted version with mass-
balance correction, using both MBC(dd)
(green bar) and Rose scale (blue bar).
ddMMBC_only represents the prediction
made using only the fitted mutation
coefficients without incorporating a
method. KD* (Kyte & Doolittle, 1982) and
Rose* (Rose et al., 1985) and are the
scale difference values without any fitting.
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90%, thus any bias that may be introduced by using
models instead of experimental structures is captured
by the methods. Nonetheless, the MBC(dd) validity is
not affected by the choice of model origin (Table S2):
using the MBC(dd) correction derived from the PDB
structures on the same test sets, but giving in input the
AlphaFold structures instead of those from PDB, results
in models that are even better performing. Both Stability
Oracle and Pythia/MBC(dd)-AF achieve a PCC higher
than the one obtained by the benchmark DDGun3D
method (PCC: 0.62), whose performance on the S461
data set is very strong (Figure 2 and Table S2). We
also computed the MBC(dd) correction for Stability Ora-
cle and DDGun3D benchmarks, and, as expected, the
result is worse for both methods (Figure 2). This sup-
ports our expectation that these methods, which
already account for descriptors of the unfolded state in
their input, such as the stoichiometry of the mutation
process, are effectively capturing the correct underlying
physics without requiring any posterior corrections. See
Figure 2 for a summary of the results, while detailed
reports are included within the Supporting Information.

2.2 | Comparison between residue
specific-coefficients and experimental
solvation scales

We performed a Pearson correlation analysis among
the residue-specific parameters fitted using the
VBS3322 dataset (see Methods section) to assess their

consistency across different methods. Additionally, we
included solvation and hydrophobicity scale values in
the correlation comparison to evaluate their relationship
with the fitted parameters. As shown in Figure 3, the
amino acid-specific parameters (a1 to a20) exhibit
strong correlations across the potential-like methods.
Furthermore, these fitted parameters show a notable
correlation with the Kyte and Doolittle hydrophobicity
scale and an even stronger correlation with the experi-
mentally derived Rose scale, which was specifically
designed to predict the average change in solvent
accessible surface area of amino acids upon folding.

In agreement with these observations, we then
computed a new MBC based on the Rose scale,
referred to as MBC(Rose). This correction was derived
using a two-parameter linear combination between the
original-method delta and the Rose-scale delta (see
Equation 8), with results summarized in Figure 2. The
performance of MBC(Rose) is consistent with, or in
some cases superior to, that obtained by the MBC(dd)
approach.

As a further validation, we computed the Pythia/
MBC(dd) and Pythia/MBC(Rose) scores using the
parameters derived from our VBS3322 training set
and tested them on the independent mega-scale data-
set (Tsuboyama et al., 2023), which was not used in
the parameter derivation. The results show an
improvement (PCC: +0.07) over the original Pythia
score, achieving a PCC close to 0.70 and an RMSE
of 1.43 kcal/mol. Further details are provided in
Table S5.

F I GURE 3 Correlation among the
residue coefficients of the different
methods and two hydrophobicity scales
(Kyte–Doolittle and Rose). DDGun3D
contains explicitly the difference of the
Kyte–Doolittle values. ddmbc_aa_ridge is
highly correlated with the Rose scale.
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2.3 | Generalization of the mass-balance
correction across different methods

Reeves and Kalyaanamoorthy (2024) recently
highlighted that structure-based and sequence-based
PLMs can be linearly combined to improve the perfor-
mance, indicating that these two methodological clas-
ses provide complementary information. They further
noted that “… PSLMs can be reliably augmented with
physicochemical properties to exceed the median per-
formance of the benchmark stability predictor …”. This
aligns with our model, since.

ΔΔG¼ GF mð Þ�GF wð Þð Þ� GU mð Þ�GU wð Þð Þ
¼ΔΔHF �TΔΔSF :

ð5Þ

Thus, it is reasonable to think that both sequence
and structure-based terms correspond to the ΔΔG term
for the unfolded and folded states, respectively.

Additionally, the molecular volume and the solvent-
accessible surface area (SASA) play a crucial role in
estimating the solvation energy changes (a large part
of ΔΔSF) when a molecule interacts with a solvent. This
concept has been widely applied in different implicit sol-
vation models, such as the GBSA family of models
(Godschalk et al., 2013; Onufriev & Case, 2019).

From this perspective, the MBC can be seen as a
proxy of this information. Our model provides a simple,
yet effective, way to estimate the Gibbs free energy dif-
ference between wild-type and mutated proteins in their
unfolded states. Alternatively, it can be interpreted as
describing the differences in the entropy of folding
(which is largely dictated by solvation effects), while the

potential-like methods primarily approximate the enthal-
pic contribution to the folding.

We thus tested whether our approach is able to
generalize across different methods, considering the
predictions of 48 methods on the S461 dataset taken
from Reeves and Kalyaanamoorthy (2024) and supple-
mented by the Pythia data. To fit the two scale values
related to the method and to the Rose scale (see
Methods equation 8) we used the prediction reported
by the same authors on the Ssym dataset (Pucci
et al., 2018).

Figure 4 reports the obtained results, grouping the
methods into MBC-aware (i.e. trained with some mass-
balance correction) and non-MBC-aware approaches
(such as PLMs, which does not account for the mass
balance). As expected, the MBC approach notably
improved the performance of non-MBC-aware
methods.

More specifically, Table S3 reports consistent
improvements across most of the potential-like methods,
with substantial increases in PCC for Pythia (+0.19),
ProteinMPNN (+0.18), and FoldX (+0.18), leading to
performance close to the current state-of-the-art for
Pythia/MBC(Rose). In contrast, methods that already
incorporate MBC information exhibited only minor
improvements (e.g., Stability Oracle: +0.01 PCC) or
even decreasing performance (e.g., PoPMuSiC
(Dehouck et al., 2009): �0.04 PCC).

3 | CONCLUSIONS

The mass-balance correction (MBC), whether data-
driven or based on an experimentally derived scale,
demonstrates broad applicability, enhancing the perfor-
mance of various potential-like methods developed
through different approaches. These include
knowledge-based potentials, sequence- and structure-
based protein language models (PLMs), and a self-
supervised deep graph-neural network. Notably, MBC
achieves these improvements without requiring any
reparameterization of the base methods and with negli-
gible additional computational cost.

In several cases, the enhancement of the perfor-
mance due to MBC is substantial (Table S2). Specifi-
cally, in the case of Pythia, the results are particularly
notable, bringing Pythia/MBC close to state-of-the-art
performance (from 0.41 to 0.56 PCC; Table S2) while
also addressing the method’s poor antisymmetry
(Table S6). More generally, MBC preserves the anti-
symmetry of the improved methods whenever the origi-
nal methods exhibit this property.

This finding strongly supports our hypothesis that a
better description of the unfolded state of the proteins
might be a necessary step to improve the current state-
of-the-art protein stability-change predictions. The MBC
correction is just a simple, yet effective, zero-order

F I GURE 4 Comparison with methods that directly include a
mass-balance correction (MBC aware) with those that compute only a
difference between the folding states (non-MBC aware). The plot
reports the distribution of the difference between the Pearson’s
correlation after and before the mass-balance term is added. Source:
The data are from Reeves and Kalyaanamoorthy (2024).

ROSSI ET AL. 5 of 8

 1469896x, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.70134 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



correction. Thus, it is clearly possible to envision more
sophisticated and, eventually, better-performing methods.
Nonetheless, we believe that the simplicity of our
approach has its own merits per se, since it allows the ret-
rofitting of several existing approaches, achieving good
performance and avoiding extra computational costs.

4 | MATERIALS AND METHODS

4.1 | Datasets composition

The main training set used in this work, namely
VBS3322, consists of 3322 mutations obtained by com-
bining the VariBench (Sasidharan Nair &
Vihinen, 2013) and the S2648 (Dehouck et al., 2009)
data sets. In the cases where the same mutation is
reported in both data sets, the VariBench value is con-
sidered. We also augmented the dataset by including
the antisymmetric complement of each mutation, as
suggested in a previous work (Capriotti et al., 2008).

The test set used for the benchmarking is the S461.
For all the structures that showed missing backbone
atoms, we preprocessed the structure using the
PDBFixer utility (Eastman et al., 2017).

The FoldX results used for both training and evalua-
tion have already been published (Pancotti et al., 2022),
while Stability Oracle results for the S461 dataset have
been computed from the data provided by its authors on
Github (https://github.com/danny305/StabilityOracle).

4.2 | Mass balance correction

The simplest approach to calculate the ΔΔG for the
sequence-mutation process is to assume that the sec-
ond term of Equation (1) depends only on the amino
acids involved in the mutation.

This simplification leads to the following reaction,
considering the wild-type wð Þ and mutated mð Þ
residues:

Protein w, ið ÞþResidue mð Þ⇄ Protein m, ið ÞþResidue wð Þ,
ð6Þ

where Protein x, ið Þ represents a protein with residue x
in position i, while Residue xð Þ refers to a single amino
acid. Conceptually, this corresponds to estimating the
difference in the (effective) Gibbs free energy of solva-
tion for two amino acids in solution and within the field
of the protein. From another perspective, this approach
approximates the free energy of the unfolded state as
the sum of independent contributions from each amino
acid. Physically, these contributions may arise from the
conformational entropy of both the side chain and main
chain, as well as their interactions with the solvent.

Under this approximation, all terms disappear except
for the contributions of the wild-type and mutated amino
acids, significantly simplifying the calculation.

4.3 | Input encoding

We encode the mutation in the sequence as a
20-element array, one element for each of the natural
amino acids, and we encode their occurrence (O) as
�1 for the wild-type amino acid and +1 for the
substitution.

The modified expression to calculate ΔΔG is then
expressed as a linear combination of the original-method
score (S) for the wild-type and the mutated protein:

ΔΔG¼ a0 S mð Þ�S wð Þð Þþ
X20
i¼1

aiOi , ð7Þ

where the first term is the (scaled) output of the original
method and the second term represents the pseudo-
ΔΔG of solvation for the amino acids involved in the
mutation (the data-driven MBC).

The first term S xð Þ thus corresponds to the ΔΔG
predicted by the original method, while the second term
depends on amino acid-related parameters.

It should also be observed that Equation (7), being
antisymmetric by definition, preserves the antisymmetry
in the prediction of the original methods, if present.

The 21 coefficients for the linear model above can
be easily derived via a simple linear regression with
respect to the training set.

Similarly, the MBC(Rose) correction is computed as
a two-parameter linear combination of the original-
method score (S) and Rose-scale delta.

ΔΔG¼a0 S mð Þ�S wð Þð Þþa1 R mð Þ�R wð Þð Þ, ð8Þ

where R mð ÞandR wð Þ are the values of the Rose scale
for the mutated- and wild-type amino acid, respectively.

4.4 | Measures of performance

To evaluate the performance of the methods in the
regression task, we compared the predicted (p) and
experimental (e) values of the variation of unfolding free
energy change upon mutation (ΔΔG). The standard
scoring values calculated in our assessment are the
Pearson correlation coefficients (PCC) and the root
mean square error (RMSE), defined as follows:

PCC¼
PN

i¼1 ΔΔGe�ΔΔGe
� �

ΔΔGp�ΔΔGp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ΔΔGe�ΔΔGe

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ΔΔGp�ΔΔGp

� �2q ,

ð9Þ
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RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ΔΔGp�ΔΔGe
� �2

N

s
, ð10Þ

where ΔΔGp and ΔΔGe are the average predicted and
experimental ΔΔG values, respectively.
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